分析 由條件利用正弦定理求得cosB=sinB,cosC=sinC,可得B=C=$\frac{π}{4}$,可得A=$\frac{π}{2}$,可得△ABC中最長(zhǎng)的邊是a.
解答 解:在△ABC中,若$\frac{sinA}{a}$=$\frac{cosB}$=$\frac{cosC}{c}$,
則由正弦定理 $\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,
可得cosB=sinB,cosC=sinC,
∴B=C=$\frac{π}{4}$,
∴A=$\frac{π}{2}$,
∴△ABC中最長(zhǎng)的邊是a,
故答案為:a.
點(diǎn)評(píng) 本題主要考查正弦定理的應(yīng)用,大角對(duì)大邊,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}$+$\frac{1}$=$\frac{1}{c}$ | B. | $\frac{2}{a}$+$\frac{1}$=$\frac{3}{c}$ | C. | $\frac{2}{a}$+$\frac{2}$=$\frac{3}{c}$ | D. | $\frac{1}{a}$+$\frac{2}$=$\frac{2}{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{9}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 圓 | B. | 橢圓 | C. | 雙曲線 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com