5.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P為棱A1B1中點(diǎn),點(diǎn)Q在側(cè)面DCC1D1內(nèi)運(yùn)動,若∠PBQ=∠PBD,則動點(diǎn)Q的軌跡所在曲線為( 。
A.B.橢圓C.雙曲線D.拋物線

分析 先確定∠PBQ是定值,利用平面DCC1D1∥BP,可得動點(diǎn)Q的軌跡所在曲線為雙曲線.

解答 解:∵∠PBQ=∠PBD,∴∠PBQ是定值,
∵平面DCC1D1∥BP,
∴動點(diǎn)Q的軌跡所在曲線為雙曲線,
故選:C.

點(diǎn)評 本題考查立體幾何中的軌跡問題,考查考查圓錐曲線的定義,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:$\frac{si{n}^{2}α}{1+cotα}$+$\frac{co{s}^{2}α}{1+tanα}$=1-sinαcosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.△ABC中,若$\frac{sinA}{a}$=$\frac{cosB}$=$\frac{cosC}{c}$,則△ABC中最長的邊是a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l1:ax-y+1=0與l2:x+ay+1=0(a∈R),給出如下結(jié)論:
①不論a為何值時,l1與l2都互相垂直;
②當(dāng)a變化時,l1與l2分別經(jīng)過定點(diǎn)A(0,1)和B(-1,0);
③不論a為何值時,l1與l2都關(guān)于直線x+y=0對稱;
④不存在a的值,使l1與l2平行或重合.
其中所有正確的結(jié)論的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)解析式為f(x)=4•9x+3x+2.
(1)若已知函數(shù)f(x)的定義域為(-1,1),求函數(shù)f(x)的值域;
(2)若已知函數(shù)f(x)的值域為[7,+∞),求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義域為R的奇函數(shù)f(x)的周期為4,且x∈(0,2)時f(x)=ln(x2-x+b),若函數(shù)f(x)在區(qū)間[-2,2]上恰有5個零點(diǎn),則實(shí)數(shù)b應(yīng)滿足的條件是( 。
A.-1<b≤1B.-1<b<1或b=$\frac{5}{4}$C.$\frac{1}{4}$<b$≤\frac{5}{4}$D.$\frac{1}{4}$<b≤1或b=$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的圖象如圖:則滿足f(2x)•f(lg(x2-6x+120))≤0的x的取值范圍是(  )
A.(-∞,1]B.[1,+∞)C.[0,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,在定義域內(nèi)單調(diào)遞增,且在區(qū)間(-1,1)內(nèi)有零點(diǎn)的函數(shù)是(  )
A.y=log${\;}_{\frac{1}{2}}$xB.y=2x-1C.$y={x^2}-\frac{1}{2}$D.y=-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個交點(diǎn),若$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow{0}$,則|QF|=(  )
A.3B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊答案