已知知函數(shù)f(x)=
x+1
|x|+1
,x∈R,則不等式f(x2-2x)<f(3x-4)的解集是
 
考點:其他不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:討論x的符號,去絕對值,作出函數(shù)的圖象,由圖象可得原不等式即為
3x-4≥0
x2-2x<0
3x-4<0
x2-2x<0
x2-2x<3x-4
,
分別解出它們,再求并集即可.
解答: 解:當(dāng)x≥0時,f(x)=
x+1
x+1
=1,
當(dāng)x<0時,f(x)=
x+1
1-x
=-1-
2
x-1

作出f(x)的圖象,可得f(x)在(-∞,0)上遞增,
不等式f(x2-2x)<f(3x-4)即為
3x-4≥0
x2-2x<0
3x-4<0
x2-2x<0
x2-2x<3x-4
,
即有
x≥
4
3
0<x<2
x<
4
3
0<x<2
1<x<4

解得
4
3
≤x<2或1<x<
4
3
,
即有1<x<2.
則解集為(1,2).
故答案為:(1,2).
點評:本題考查函數(shù)的單調(diào)性的運用:解不等式,主要考查二次不等式的解法,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入數(shù)據(jù)n=3,a1=1,a2=2,a3=3,則輸出的結(jié)果為(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列恒等式:
(1)cos2α+2sin2α+sin2αtan2α=
1
cos2α
;
(2)cos2α(2+tanα)(1+2tanα)=2+5sinαcosα;
(3)
1+tan2A
1+cot2A
=(
1-tanA
1-cotA
2
(4)
tanA-tanB
cotB-cotA
=
tanB
cotA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程cosx+sin2x+m-1=0(m∈R)恒有實數(shù)解,記m的所有可能取值構(gòu)成集合P;又焦點在x軸上的橢圓
x2
n+2
+y2
=1(n∈R)的離心率的取值范圍為(0,
3
2
],記n的所有可能取值構(gòu)成集合Q.設(shè)M=P∩Q,若λ為區(qū)間[-1,4]上的隨機數(shù),則λ∈M的概率為(  )
A、
1
20
B、
9
20
C、
1
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若全集U=R,集合A={x|x2+x-2≤0},B={y|y=log2(x+3),x∈A},則集合A∩(∁UB)=( 。
A、{x|-2≤x<0}
B、{x|0≤x≤1}
C、{x|-3<x≤-2}
D、{x|x≤-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)值域:y=
1
tanx
(-
π
4
≤x≤
π
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos360°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),且f(1)=2,則f(-5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+i)m2+(7-5i)m+10-14i=0,則實數(shù)m=
 

查看答案和解析>>

同步練習(xí)冊答案