19.A={(x,y)|3x+2y=9},B={(x,y)|5x-y=28},則A∩B等于A={(5,-3)}.

分析 聯(lián)立方程組求解即得兩集合的交集.

解答 解:∵A={(x,y)|3x+2y=9},B={(x,y)|5x-y=28},
∴A∩B={(x,y)|$\left\{\begin{array}{l}{3x+2y=9}\\{5x-y=28}\end{array}\right.$}
={(x,y)|$\left\{\begin{array}{l}{x=5}\\{y=-3}\end{array}\right.$}
={(5,-3)}.
故答案為:{(5,-3)}.

點(diǎn)評 本題考查了交集及其運(yùn)算,也考查了方程組的解法問題,是基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某保險(xiǎn)公司對2014年投保的車輛的賠付情況進(jìn)行統(tǒng)計(jì),賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元)01500300050005000以上
頻率0.500.180.150.120.05
(1)若每輛車的投保金額均為3000元,估計(jì)賠付金額大于投保金額的概率;
(2)若2014年該公司總共投保10000輛,出租車占10%,在賠付金額為5000元的車輛中,出租車占12%,估計(jì)在已投保的出租車中,獲賠金額為5000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知O為坐標(biāo)原點(diǎn),雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F(-c,0)(c>0),以O(shè)F為直徑的圓交雙曲線C的漸近線于A,B,O三點(diǎn),且($\overrightarrow{AO}$+$\overrightarrow{AF}$)$•\overrightarrow{OF}$=0,若關(guān)于x的方程ax2+bx-c=0的兩個(gè)實(shí)數(shù)根分別為x1和x2,則以|x1|,|x2|,2為邊長的三角形的形狀是(  )
A.鈍角三角形B.直角三角形C.銳角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則y=loga(x2+2x+5)的最小值為( 。
A.0B.2log32C.2D.log25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(x+2,x),若$\overrightarrow{a}∥\overrightarrow$,則x=-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=2-2cos2(π+x)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在Rt△ACD中,AH⊥CD,H為垂足,CD=4,AD=2$\sqrt{3}$,∠CAD=90°,以CD為軸,將△ACD按逆時(shí)針方向旋轉(zhuǎn)90°到△BCD位置,E為AD中點(diǎn);
(Ⅰ)證明:AB⊥CD.
(Ⅱ)求二面角B-CE-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2+6x+5=0相切,且圓C的圓心是雙曲線的一個(gè)焦點(diǎn),則該雙曲線的方程為( 。
A.$\frac{x^2}{5}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{5}=1$C.$\frac{x^2}{3}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{a}$=(-3,1),$\overrightarrow$=(-1,2),則3$\overrightarrow{a}$-2$\overrightarrow$=(  )
A.(7,1)B.(-7,-1)C.(-7,1)D.(7,-1)

查看答案和解析>>

同步練習(xí)冊答案