分析 (Ⅰ)由橢圓的離心率為$\frac{1}{2}$,焦點(diǎn)與短軸的兩頂點(diǎn)的連線與圓x2+y2=$\frac{3}{4}$相切,列出方程組,求出a,b,由此能求出橢圓方程.
(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)其方程為y=k(x-1),A(x1,y1),B(x2,y2),直線方程與橢圓立,利用韋達(dá)定理、根的判別式、向量的數(shù)量積,結(jié)合已知條件能求出存在點(diǎn)$N({\frac{11}{8},0})$滿足$\overrightarrow{NA}•\overrightarrow{NB}=-\frac{135}{64}$.
解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,焦點(diǎn)與短軸的兩頂點(diǎn)的連線與圓x2+y2=$\frac{3}{4}$相切,
∴$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{1}{2}}\\{bc=\frac{\sqrt{3}}{2}\sqrt{^{2}+{c}^{2}}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,
解得c2=1,a2=4,b2=3
∴橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$(6分)
(Ⅱ)當(dāng)直線l的斜率存在時(shí),設(shè)其方程為y=k(x-1),A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}3{x^2}+4{y^2}=12\\ y=k({x-1})\end{array}\right.⇒({3+4{k^2}}){x^2}-8{k^2}x+4{k^2}-12=0$
則△>0,$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{8{k^2}}}{{4{k^2}+3}}\\{x_1}{x_2}=\frac{{4{k^2}-12}}{{4{k^2}+3}}\end{array}\right.$,
若存在定點(diǎn)N(m,0)滿足條件,
則有$\overrightarrow{NA}•\overrightarrow{NB}$=(x1-m)(x2-m)+y1y2
=${m}^{2}-m({x}_{1}+{x}_{2})+{k}^{2}({x}_{1}-1)({x}_{2}-1)$
$\begin{array}{l}=({1+{k^2}}){x_1}{x_2}-({m+{k^2}})({{x_1}+{x_2}})+{k^2}+{m^2}\\=\frac{{({1+{k^2}})({4{k^2}-12})}}{{4{k^2}+3}}-\frac{{({m+{k^2}})8{k^2}}}{{4{k^2}+3}}+{k^2}+{m^2}\\=\frac{{({4{m^2}-8m-5}){k^2}+3{m^2}-12}}{{4{k^2}+3}}\end{array}$
如果要上式為定值,則必須有$\frac{{4{m^2}-8m-5}}{{3{m^2}-12}}=\frac{4}{3}⇒m=\frac{11}{8}$
驗(yàn)證當(dāng)直線l斜率不存在時(shí),也符合.
故存在點(diǎn)$N({\frac{11}{8},0})$滿足$\overrightarrow{NA}•\overrightarrow{NB}=-\frac{135}{64}$(9分)
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查滿足條件的點(diǎn)是否存在的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理、根的判別式、向量的數(shù)量積、橢圓性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
支持 | 反對(duì) | 合計(jì) | |
教師 | 16 | 14 | 30 |
學(xué)生 | 44 | 26 | 70 |
合計(jì) | 60 | 40 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com