15.若{$\frac{1}{{a}_{n}+1}$}為等差數(shù)列,a3=2,a7=1,則a11=(  )
A.0B.$\frac{1}{2}$C.$\frac{2}{3}$D.2

分析 由{$\frac{1}{{a}_{n}+1}$}為等差數(shù)列,可得$\frac{2}{{a}_{7}+1}$=$\frac{1}{{a}_{3}+1}$+$\frac{1}{{a}_{11}+1}$,代入解出即可得出.

解答 解:∵{$\frac{1}{{a}_{n}+1}$}為等差數(shù)列,
∴$\frac{2}{{a}_{7}+1}$=$\frac{1}{{a}_{3}+1}$+$\frac{1}{{a}_{11}+1}$,
∴$\frac{2}{2}=\frac{1}{3}$+$\frac{1}{{a}_{11}+1}$,解得a11=$\frac{1}{2}$.
故選:B.

點評 本題考查了等差數(shù)列的通項公式及其性質(zhì),考查了推理能力與空間想象能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點P(4,2)是直線l被橢圓$\frac{x^2}{36}+\frac{y^2}{9}=1$所截得的線段的中點,
(1)求直線l的方程
(2)求直線l被橢圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在R上的函數(shù)f(x)滿足:對任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:函數(shù)f(x)=x2是偶函數(shù),且在[0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若兩點A(x,5-x,2x-1),B(1,x+2,2-x),當(dāng)|$\overrightarrow{AB}$|取最小值時,x的值等于$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若某幾何體的三視圖如圖所示,則此幾何體的體積等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面各組函數(shù)中為相等函數(shù)的是( 。
A.f(x)=$\sqrt{{{({x-1})}^2}}$,g(x)=x-1B.f(x)=$\sqrt{{x^2}-1},g(x)=\sqrt{x-1}•\sqrt{x+1}$
C.f(x)=x-1,g(x)=$\frac{1}{x-1}$D.f(x)=x0,g(x)=$\frac{1}{x^0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx+(-1)n$\frac{1}{{x}^{n}}$,其中n∈N*,a為常數(shù).
(Ⅰ)當(dāng)n=2,且a>0時,判斷函數(shù)f(x)是否存在極值,若存在,求出極值點;若不存在,說明理由;
(Ⅱ)若a=1,對任意的正整數(shù)n,當(dāng)x≥1時,求證:f(x+1)≤x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$共面$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowawg24ss$也共面,則下列說法正確的是( 。
A.若$\overrightarrow$與$\overrightarrow{c}$不共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowcowa6qq$共面B.若$\overrightarrow$與$\overrightarrow{c}$共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow68ggmke$共面
C.當(dāng)且僅當(dāng)$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowu04quw4$共面D.若$\overrightarrow$與$\overrightarrow{c}$不共線,則$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowo0oq2uw$不共面

查看答案和解析>>

同步練習(xí)冊答案