3.證明:函數(shù)f(x)=x2是偶函數(shù),且在[0,+∞)上是增函數(shù).

分析 根據(jù)函數(shù)奇偶性的定義,可判斷函數(shù)f(x)=x2是偶函數(shù),求導(dǎo),根據(jù)x∈[0,+∞)時,f′(x)≥0恒成立,可得:函數(shù)f(x)=x2在[0,+∞)上是增函數(shù).

解答 證明:函數(shù)f(x)=x2的定義域關(guān)于原點對稱,
且f(-x)=(-x)2=x2=f(x)恒成立,
故函數(shù)f(x)=x2是偶函數(shù),
又∵f′(x)=2x,
當(dāng)x∈[0,+∞)時,f′(x)≥0恒成立,
故函數(shù)f(x)=x2在[0,+∞)上是增函數(shù).

點評 本題考查的知識點是函數(shù)奇偶性的證明,函數(shù)單調(diào)性的證明,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=cos$({x-\frac{π}{2}})$,g(x)=ex•f(x),其中e為自然對數(shù)的底數(shù).
(1)求曲線y=g(x)在點(0,g(0))處的切線方程;
(2)若對任意$x∈[{\frac{π}{4},\frac{π}{2}}]$時,方程g(x)=xf(x)的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左、右焦點,A為橢圓上一點,且$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$),$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$),則|$\overrightarrow{OB}$|+|$\overrightarrow{OC}$|=( 。
A.2$\sqrt{5}$B.2C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=lnx-3x,則曲線y=f(x)在點(1,-3)處的切線方程是2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,已知角A,B,C的對邊分別為a,b,c,且a=5,b=6,c=7,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,已知矩形ABCD與矩形ABEF全等,二面角DABE為直二面角,M為AB的中點,F(xiàn)M與BD所成的角為θ,且cos θ=$\frac{\sqrt{3}}{9}$,則$\frac{AB}{BC}$=( 。
A.1B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若{$\frac{1}{{a}_{n}+1}$}為等差數(shù)列,a3=2,a7=1,則a11=(  )
A.0B.$\frac{1}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知點A、B、C、D在同一個球的球面上,AB=BC=$\sqrt{2}$,AC=2,若四面體ABCD中球心O恰好在側(cè)棱DA上,DC=2$\sqrt{3}$,則這個球的表面積為( 。
A.$\frac{25π}{4}$B.C.16πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程x3-3x+1=0的一個根在區(qū)間(k,k+1)(k∈N )內(nèi),則k=1.

查看答案和解析>>

同步練習(xí)冊答案