19.以(1,1)和(2,-2)為一條直徑的兩個端點的圓的方程為x2+y2-3x+y=0.

分析 以(1,1)和(2,-2)為直徑的圓的圓心與半徑,即可求解圓的方程.

解答 解:以(1,1)和(2,-2)為直徑的圓的圓心為($\frac{3}{2}$,-$\frac{1}{2}$),
半徑為:r=$\frac{1}{2}$$\sqrt{(2-1)^{2}+({-2-1)}^{2}}$=$\frac{\sqrt{10}}{2}$.
∴圓的方程為(x-$\frac{3}{2}$)2+(x+$\frac{1}{2}$)2=$\frac{10}{4}$,
整理,得x2+y2-3x+y=0.
故答案為:x2+y2-3x+y=0.

點評 本題考查圓的標(biāo)準(zhǔn)方程的求法,解題時要認(rèn)真審題,注意圓的方程的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.R表示實數(shù)集,集合M={x|0<x<2},N={x|x2+x-6≤0},則下列結(jié)論正確的是(  )
A.M∈NB.RM⊆NC.M∈∁RND.RN⊆∁RM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,如果sinA:sinB:sinC=6:7:9,則△ABC一定是( 。
A.鈍角三角形B.直角三角形C.銳角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=1,且anan+1+$\sqrt{3}$(an-an+1)+1=0,則a2016=(  )
A.1B.-1C.2+$\sqrt{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.△ABC的頂點坐標(biāo)分別為A(2,-4),B(6,6),C(-2,0),求:
(1)平行于三角形BC邊的中位線所在的直線方程;
(2)BC邊上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在等差數(shù)列{an},an=11-2n,求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在平行四邊形ABCD中,已知$\overrightarrow{|AB|}$=8,$\overrightarrow{|AD|}$=5,$\overrightarrow{CP}=3\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}=2$,則$\overrightarrow{AB}•\overrightarrow{AD}$=22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.作出下列函數(shù)的圖象.
(1)y=|x-2|•(x+2);
(2)y=|log2(x+1)|;
(3)y=$\frac{2x-1}{x-1}$;
(4)y=x2-2|x|-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.將正偶數(shù)排列如圖,其中第i行和第j列的數(shù)表示為aij=(i,j∈N+),例如a43=18,若aij=2016,則i+j=63.

查看答案和解析>>

同步練習(xí)冊答案