19.已知(1-2x)5(1+ax)4的展開式中x的系數(shù)為2,則實(shí)數(shù)a的值為3.

分析 根據(jù)題意可得展開式中x的系數(shù)為${C}_{5}^{1}$•(-2)+${C}_{4}^{1}$•a=2,由此求得實(shí)數(shù)a的值.

解答 解:(1-2x)5(1+ax)4的展開式中x的系數(shù)為${C}_{5}^{1}$•(-2)+${C}_{4}^{1}$•a=2,則實(shí)數(shù)a=3,
故答案為:3.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某學(xué)校為了更好的培養(yǎng)尖子生,使其全面發(fā)展,決定由3名教師對5個(gè)尖子生進(jìn)行“包教”,要求每名教師的“包教”學(xué)生不超過2人,則不同的“包教”方案有( 。
A.60B.90C.150D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知PQ是圓x2+y2=100的動(dòng)弦,|PQ|=12,則PQ中點(diǎn)的軌跡方程是(  )
A.x2+y2=8B.x2+y2=64C.x2+y2=36D.x2+y2=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知tanα=$\frac{1}{2}$,則sin2α-sin2α的值是$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=loga(x+2)(a>0,a≠1)的圖象必過定點(diǎn)( 。
A.(-1,1)B.(1,2)C.(-1,0)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-3.
(1)當(dāng)a=1時(shí),求f(x)在點(diǎn)(1,1)處的切線方程.
(2)如果對任意的$s,t∈[\frac{1}{2},2]$,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.中國經(jīng)濟(jì)的高速增長帶動(dòng)了居民收入的提高,為了調(diào)查高收入(年收入是當(dāng)?shù)厝司晔杖?0倍以上)人群的年齡分布情況,某校學(xué)生利用暑假進(jìn)行社會(huì)實(shí)踐,對年齡在[25,55)內(nèi)的人群隨機(jī)調(diào)查了1000人的收入情況,根據(jù)調(diào)查結(jié)果和收集的數(shù)據(jù)得到如下統(tǒng)計(jì)表和各年齡段人數(shù)的頻率分布直方圖.
組別分組高收入的人數(shù)高收入人數(shù)占本組的比例
第一組[25,30)180.12
第二組[30,35)360.144
第三組[35,40)480.192
第四組[40,45)A0.15
第五組[45,50)12b
第六組[50,55)60.12

(1)補(bǔ)全頻率分布直方圖,根據(jù)頻率分布直方圖,求這1000人年齡的中位數(shù);
(2)求統(tǒng)計(jì)表中a,b的值,為了分析高收入居民人數(shù)與年齡的關(guān)系,要從高收入人群中按年齡組用分層抽樣的方法抽取25人作進(jìn)一步分析,則年齡在[30,40)內(nèi)的高收入人群應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.時(shí)間經(jīng)過10分鐘,則分針轉(zhuǎn)過的角等于(  )
A.-$\frac{π}{3}$B.$\frac{π}{3}$C.-$\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z=$\frac{3+i}{1+i}$的虛部為( 。
A.-iB.iC.-1D.1

查看答案和解析>>

同步練習(xí)冊答案