8.時(shí)間經(jīng)過(guò)10分鐘,則分針轉(zhuǎn)過(guò)的角等于(  )
A.-$\frac{π}{3}$B.$\frac{π}{3}$C.-$\frac{π}{6}$D.$\frac{π}{6}$

分析 利用鐘表表盤(pán)的特征解答.表盤(pán)共被分成60小格,每一小格所對(duì)角的度數(shù)為$\frac{π}{30}$,由題意即可計(jì)算得解.

解答 解:表盤(pán)共被分成60小格,每一小格所對(duì)角的度數(shù)為$\frac{π}{30}$.
分針經(jīng)過(guò)10分鐘,那么它轉(zhuǎn)過(guò)的角度是:$\frac{π}{30}$×10=$\frac{π}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了鐘表時(shí)針與分針的夾角的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.書(shū)架上有3本科技書(shū)和5本文藝書(shū),要求科技書(shū)不能放在一起,一共有14400種不同的方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知(1-2x)5(1+ax)4的展開(kāi)式中x的系數(shù)為2,則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知命題p:x2-2x-3≥0;命題q:0<x<4.若q是假命題,p∨q是真命題,則實(shí)數(shù)x的取值范圍為( 。
A.(-∞,-1]∪[4,+∞)B.(-∞,-1]∪[3,+∞)C.[-1,0]∪[3,4]D.(-∞,0]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離等于2p,則直線MF的斜率為( 。
A.$±\frac{{\sqrt{3}}}{3}$B.$±\frac{3}{4}$C.±1D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$y=2{sin^2}x+2sinx-\frac{1}{2}$,$x∈[{\frac{π}{6},\frac{5π}{6}}]$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為$\frac{32}{3}{p^2}$,求直線AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知拋物線y2=2px(p>0)上一點(diǎn)M的橫坐標(biāo)為3,且滿足|MF|=2p,則拋物線方程為(  )
A.y2=2xB.y2=4xC.y2=$\frac{1}{2}$xD.y2=6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)整數(shù)x,y滿足約束條件,$\left\{\begin{array}{l}x≥0\\ y≥x\\ 8x+5y≤40\end{array}\right.$,則$\frac{x+2y+3}{x+1}$取值范圍是( 。
A.[2,6]B.[3,11]C.[$\frac{11}{3}$,8]D.[3,19]

查看答案和解析>>

同步練習(xí)冊(cè)答案