9.復(fù)數(shù)z=$\frac{3+i}{1+i}$的虛部為(  )
A.-iB.iC.-1D.1

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:z=$\frac{3+i}{1+i}$=$\frac{(3+i)(1-i)}{(1+i)(1-i)}$=$\frac{4-2i}{2}$=2-i的虛部為-1.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知(1-2x)5(1+ax)4的展開(kāi)式中x的系數(shù)為2,則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為$\frac{32}{3}{p^2}$,求直線AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知拋物線y2=2px(p>0)上一點(diǎn)M的橫坐標(biāo)為3,且滿足|MF|=2p,則拋物線方程為(  )
A.y2=2xB.y2=4xC.y2=$\frac{1}{2}$xD.y2=6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知虛數(shù)z滿足2z-$\overline{z}$=1+9i,則$\overline{z}$=1-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若存在兩個(gè)正實(shí)數(shù)x,y,使得x+a(y-2ex)(lny-lnx)=0成立,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0)∪[$\frac{1}{e}$,+∞)B.(0,$\frac{1}{e}$]C.[$\frac{1}{e}$,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a,b是異面直線,且a⊥b,$\overrightarrow{e}$1,$\overrightarrow{e}$2分別為取自直線a,b上的單位向量,且,$\overrightarrow a$=2$\overrightarrow{e}$1+3$\overrightarrow{e}$2,$\overrightarrow b$=k$\overrightarrow{e}$1-4$\overrightarrow{e}$2,$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)k的值為( 。
A.-6B.6C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)整數(shù)x,y滿足約束條件,$\left\{\begin{array}{l}x≥0\\ y≥x\\ 8x+5y≤40\end{array}\right.$,則$\frac{x+2y+3}{x+1}$取值范圍是( 。
A.[2,6]B.[3,11]C.[$\frac{11}{3}$,8]D.[3,19]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若α為第二象限角,則下列各式恒小于零的是( 。
A.sinα-tanαB.sinα+cosαC.tanα+sinαD.cosα-tanα

查看答案和解析>>

同步練習(xí)冊(cè)答案