在等差數(shù)列{an}中,已知前20項之和S20=170,則a6+a9+a12+a15=(  )
A.34B.51C.68D.70
解;∵S20=(a1+a2+…+a19+a20)=10(a1+a20)=170
∴a1+a20=17
∵a6+a9+a12+a15=2(a1+a20)=2×17=34
故選:A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列滿足,,且,
(1)求數(shù)列的通項公式;(2)對一切,證明成立;
(3)記數(shù)列的前項和分別是,證明

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知p>0,q>0,p,q的等差中項是
1
2
x=p+
1
p
,y=q+
1
q
,則x+y的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)Sn是等差數(shù)列{an}的前n項和,若
S3
S6
=
1
3
,則
S6
S12
=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知{an}為等差數(shù)列,且有a2+a6+a7+a8+a12=15,則S13=(  )
A.39B.45C.3D.91

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項和Sn能取到最大值,且滿足:a9+3a11<0,a10•a11<0,對于以下幾個結(jié)論:
①數(shù)列{an}是遞減數(shù)列;
②數(shù)列{Sn}是遞減數(shù)列;
③數(shù)列{Sn}的最大項是S10;
④數(shù)列{Sn}的最小的正數(shù)是S19
其中正確的結(jié)論的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列{an}中,a6=5,則數(shù)列{an}的前11項和S11等于( 。
A.22B.33C.44D.55

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知Sn為等差數(shù)列{an}的前n項和,若S3=9,S6=36,則S9的值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,,,則等于C
A.152B.154C.156D.158

查看答案和解析>>

同步練習冊答案