制造甲、乙兩種煙花,甲種煙花每枚含A藥品3g,B藥品4g,C種藥品4g,乙種煙花每枚含A藥品2g,B藥品11g,C藥品6g.已知每天原料的使用限額為A種藥品120g,B藥品400g,C藥品240g.甲種煙花每枚可獲利2元,乙種煙花每枚可獲利1元,問每天應(yīng)生產(chǎn)甲、乙兩種煙花各多少枚才能獲利最大.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:由題意列出表格,從而得到不等式組,作出平面區(qū)域,由線性規(guī)劃求最值.
解答: 解:根據(jù)題意,可列出下表:
A藥品(g)B藥品(g)C藥品(g)
甲種煙花344
乙種煙花2116
原料限額120400240
設(shè)每天生產(chǎn)甲種煙花x枚、乙種煙花y枚,獲利為z美元,則目標(biāo)函數(shù)z=2x+y(美元).
其中x、y應(yīng)滿足:
x≥0
y≥0
3x+2y≤120
4x+11y≤400
4x+6y≤240
,
作出上面的不等式組所表示的平面區(qū)域如下圖所示,

把z=2x+y變形為平行直線系l:y=-2x+z.
由圖可知,當(dāng)直線l經(jīng)過平面區(qū)域上的點(diǎn)(40,0)時(shí),截距z最大.
故每天只生產(chǎn)甲種煙花40枚可獲利最大.
點(diǎn)評:本題考查了由實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,同時(shí)考查了線性規(guī)劃的處理方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若8sinα+5cosβ=6,8cosα+5sinβ=10,則sin(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2>0},B={x|x-a>0}
(1)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(2)若A∪B=R,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=alg(3-ax),a>0,a≠1在定義域[-1,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(1,3)
B、(1,+∞)
C、(3,+∞)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)M(3,-1),且對稱軸在坐標(biāo)軸上的等軸雙曲線的方程是(  )
A、y2-x2=8
B、x2-y2=±8
C、x2-y2=4
D、x2-y2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項(xiàng)等比數(shù)列{an}滿足a7=a6+2a5,若存在兩項(xiàng)am,an使得
aman
=2a1,則
1
m
+
9
n
的最小值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-a
(a∈R).若存在b∈[0,1],使f(f(b))=b成立,則a的取值范圍是( 。
A、[0,
1
4
]
B、[1,2]
C、[0,1]
D、[
1
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1+an=4n-3(n∈N*).
(Ⅰ)若a1=2,求數(shù)列{an}的前n項(xiàng)和Sn;
(Ⅱ)若對任意n∈N*,都有
a
2
n
+
a
2
n+1
an+an+1
≥5成立,求n為偶數(shù)時(shí),a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2,使得對任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個(gè)寬度為d的通道.給出下列函數(shù):
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1

其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有
 
(寫出所有正確的序號)

查看答案和解析>>

同步練習(xí)冊答案