【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC. (Ⅰ)求A的大;
(Ⅱ)求sinB+sinC的最大值.
【答案】解:(Ⅰ)設(shè) 則a=2RsinA,b=2RsinB,c=2RsinC
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程兩邊同乘以2R
∴2a2=(2b+c)b+(2c+b)c
整理得a2=b2+c2+bc
∵由余弦定理得a2=b2+c2﹣2bccosA
故cosA=﹣ ,A=120°
(Ⅱ)由(Ⅰ)得:sinB+sinC
=sinB+sin(60°﹣B)
= cosB+ sinB
=sin(60°+B)
故當(dāng)B=30°時(shí),sinB+sinC取得最大值1
【解析】(Ⅰ)根據(jù)正弦定理,設(shè) ,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc 再與余弦定理聯(lián)立方程,可求出cosA的值,進(jìn)而求出A的值.(Ⅱ)根據(jù)(Ⅰ)中A的值,可知c=60°﹣B,化簡得sin(60°+B)根據(jù)三角函數(shù)的性質(zhì),得出最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)創(chuàng)“市級(jí)示范性學(xué)校”的甲、乙兩所學(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問了20為市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個(gè)等級(jí):成績?cè)趨^(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿意度進(jìn)行比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求乙校得分的等級(jí)高于甲校得分的等級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,側(cè)面是邊長為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= x+m在區(qū)間 上的最小值為3,求常數(shù)m的值及此函數(shù)當(dāng)x∈[a,a+π](其中a可取任意實(shí)數(shù))時(shí)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓是以為直徑的圓,一直線與圓相切,并與橢圓交于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}為等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S7=7,S15=75,Tn為數(shù)列 的前n項(xiàng)和,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,,側(cè)面是邊長為4的等邊三角形,底面為菱形,側(cè)面與底面所成的二面角為.
(1)求點(diǎn)到平面的距離;
(2)若為的中點(diǎn),求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng),時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),為上一點(diǎn),以為邊作等邊三角形,且、、三點(diǎn)按逆時(shí)針方向排列.
(Ⅰ)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),求點(diǎn)運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;
(Ⅱ)若曲線: ,經(jīng)過伸縮變換得到曲線,試判斷點(diǎn)的軌跡與曲線是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒有則說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com