【題目】若f(x)=x2﹣x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求a,b;
(2)求f(log2x)的最小值及相應(yīng) x的值;
(3)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.
【答案】
(1)解:∵f (x)=x2﹣x+b,∴f (log2a)=(log2a)2﹣loga+b=b,
∴l(xiāng)og2a=1,∴a=2.
又∵log2f(a)=2,f(a)=4.∴a2﹣a+b=4,∴b=2.
(2)解:由(1)得f (x)=x2﹣x+2
∴f (log2x)=(log2x)2﹣log2x+2=(log2x﹣ )2+ ,
∴當(dāng)log2x= ,即x= 時(shí),f (log2x)有最小值 .
(3)解:由題意知: ,
解得 ,
∴ ,
∴0<x<1
【解析】(1)代入利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.(2)利用二次函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.(3)由題意知: ,利用一元二次不等式的解法、對(duì)數(shù)函數(shù)的單調(diào)性即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減;①加法:②減法:③數(shù)乘:④⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x),f(0)≠0,f(1)=2,當(dāng)x>0,f(x)>1,且對(duì)任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求f(0)的值.
(2)求證:對(duì)任意x∈R,都有f(x)>0.
(3)若f(x)在R上為增函數(shù),解不等式f(3﹣2x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是直線與橢圓的一個(gè)公共點(diǎn), 分別為該橢圓的左右焦點(diǎn),設(shè)取得最小值時(shí)橢圓為.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)已知為橢圓上關(guān)于軸對(duì)稱的兩點(diǎn), 是橢圓上異于的任意一點(diǎn),直線分別與軸交于點(diǎn),試判斷是否為定值;如果為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于x∈R,[x]表示不超過(guò)x的最整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤ },則A中所有元素的和為( )
A.15
B.19
C.20
D.55
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a﹣1)(ax﹣a﹣x)(0<a<1).
(1)判斷f(x的奇偶性;
(2)用定義證明f(x)為R上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=4,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對(duì)任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長(zhǎng)的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測(cè)畫法畫出的三棱錐的直觀圖的一部分,其中點(diǎn)在平面內(nèi).
(Ⅰ)請(qǐng)?jiān)趫D2中將三棱錐的直觀圖補(bǔ)充完整,并指出三棱錐的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為,求的值;
(Ⅲ)求點(diǎn)到面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com