1.(1)試用比較法證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)
(2)已知x2+y2=2,且|x|≠|(zhì)y|,求$\frac{1}{{9{x^2}}}+\frac{9}{y^2}$的最小值.

分析 (1)利用作差法,即可證明;
(2)由柯西不等式得:(x2+y2)($\frac{1}{{9{x^2}}}+\frac{9}{y^2}$)≥$(\frac{1}{3}+3)^{2}$,即可求得結(jié)論.

解答 (1)證明:左邊=a2x2+a2y2+b2x2+b2y2,右邊=a2x2+2abxy+b2y2
左邊-右邊=a2y2+b2x2-2abxy=(ay-bx)2≥0,…(2分)
∴左邊≥右邊,命題得證.…(3分)
(2)解:∵x2+y2=2,∴由柯西不等式得:(x2+y2)($\frac{1}{{9{x^2}}}+\frac{9}{y^2}$)≥$(\frac{1}{3}+3)^{2}$,…(5分)
∴$\frac{1}{{9{x^2}}}+\frac{9}{y^2}$的最小值為$\frac{50}{9}$.…(7分)

點(diǎn)評(píng) 本題考查柯西不等式,考查不等式的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2sin (2x+$\frac{π}{6}$).
(1)求函數(shù)f(x)的最小正周期及其單調(diào)減區(qū)間;
(2)用“五點(diǎn)法”畫出函數(shù)g(x)=f(x),x∈[-$\frac{7π}{12}$,$\frac{5π}{12}$]的圖象(完成列表格并作圖),由圖象研究并寫出g(x)的對(duì)稱軸和對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\sqrt{x-2}$,g(x)=$\sqrt{x+2}$,則函數(shù)f(x)•g(x)=$\sqrt{{x}^{2}-4}$(x≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若扇形的圓心角為2弧度,它所對(duì)的弧長為4,則這個(gè)扇形的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用列舉法表示集合$A=\left\{{({x\;,\;\;y})\left|{y=\frac{6}{x+3}}\right.\;,\;\;x∈{N^*}\;,\;\;y\;∈{N^*}}\right\}$={(3,1)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列函數(shù)中既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞減的是(  )
A.y=-x+1B.y=|x|C.$y=\frac{1}{x}$D.$y=\frac{1}{{{x^2}+1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在我國明代數(shù)學(xué)家吳敬所著的《九章算術(shù)比類大全》中,有一道數(shù)學(xué)名題叫“寶塔裝燈”,內(nèi)容為“遠(yuǎn)望巍巍塔七層,紅燈點(diǎn)點(diǎn)倍加增;共燈三百八十一,請問頂層幾盞燈?”(“倍加增”指燈的數(shù)量從塔的頂層到底層按公比為2的等比數(shù)列遞增).根據(jù)此詩,可以得出塔的頂層和底層共有195盞燈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知⊙C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)求證:對(duì)任意m∈R,直線l與⊙C恒有兩個(gè)交點(diǎn);
(2)求直線l被⊙C截得的線段的最短長度,及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù)列{an}中,${S_n}=\frac{2}{n+1}$
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)${b_n}=\frac{S_n}{n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案