18.求使-2a=sinx成立的a的取值范圍.

分析 直接利用正弦函數(shù)的有界性得到關(guān)于a的不等式求解.

解答 解:由-2a=sinx,
利用三角函數(shù)的有界性可得:-1≤-2a≤1,得$-\frac{1}{2}≤a≤\frac{1}{2}$.
∴使-2a=sinx成立的a的取值范圍是[-$\frac{1}{2}$,$\frac{1}{2}$].

點評 本題考查正弦函數(shù)的值域,考查了一元一次不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)圖象過點(0,$\frac{\sqrt{2}}{2}$),如圖所示.
(1)求φ的值;
(2)若f(α)=$\frac{3}{5}$且α∈[-$\frac{1}{4}$,$\frac{1}{4}$],求sinπα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義在R上的奇函數(shù)f(x)滿f(x)=-f(x+2),當(dāng)x∈[0,1]時,f(x)=$\frac{x}{2}$,則f($\frac{4007}{2}$)=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=2sin($\frac{1}{2}$x+$\frac{π}{3}$).
(1)求函數(shù)的最大值、最小值和最小正周期;
(2)函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知sin($\frac{π}{4}$+x)=$\frac{12}{13}$,0<x<$\frac{π}{4}$,求$\frac{cos2x}{cos(\frac{π}{4}-x)}$的值為$\frac{10}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若f(x)=$\frac{{2sin}^{2}\frac{α}{2}-1}{2sin\frac{α}{2}cos\frac{α}{2}}$,則f($\frac{π}{12}$)=( 。
A.-$\frac{4}{3}$$\sqrt{3}$B.-4$\sqrt{3}$C.4$\sqrt{3}$D.-2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cot(-α-π)si{n}^{2}(-π-α)}$.
(1)化簡f(α);
(2)若f(α)=$\frac{1}{2}$,求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$\frac{1+tan12°tan72°}{tan12°-tan72°}$=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.化簡:$\frac{1-cosα}{1+cosα}$=(  )
A.sin2αB.tan2αC.sin2$\frac{α}{2}$D.tan2$\frac{α}{2}$

查看答案和解析>>

同步練習(xí)冊答案