10.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cot(-α-π)si{n}^{2}(-π-α)}$.
(1)化簡f(α);
(2)若f(α)=$\frac{1}{2}$,求$\frac{sinα+cosα}{sinα-cosα}$的值.

分析 (1)直接利用三角函數(shù)的誘導(dǎo)公式化簡求值;
(2)由f(α)=$\frac{1}{2}$,得tanα=-2,把$\frac{sinα+cosα}{sinα-cosα}$分子分母同時除以cosα,轉(zhuǎn)化為正切得答案.

解答 解:(1)f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cot(-α-π)si{n}^{2}(-π-α)}$
=$\frac{sinα•cosα•cotα}{-cotα•si{n}^{2}α}$=-cotα;
(2)由f(α)=$\frac{1}{2}$,得$-cotα=\frac{1}{2}$,
∴tanα=-2.
則$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}=\frac{-2+1}{-2-1}=\frac{1}{3}$.

點評 本題考查三角函數(shù)的化簡求值,考查了誘導(dǎo)公式及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,已知在?ABCD中,AB=3,AD=1,∠DAB=$\frac{π}{3}$,求對角線AC和BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知tanα=-$\frac{2}{3}$,且角α是第二象限的角,求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求使-2a=sinx成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過點(3,4)且與3x-2y-7=0垂直的直線方程是(  )
A.2x+3y-18=0B.3x+2y-17=0C.2x+3y+18=0D.2x-3y+6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求經(jīng)過直線l1:x+y-2=0與直線l2:x-y+2=0的交點且平行于直線l3:3x+4y+5=0的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知銳角α滿足cosα-sinα=-$\frac{\sqrt{5}}{5}$,則$\frac{sin2α-cos2α+1}{1-tanα}$=$-\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某種商品第一天上市售價42元,以后每天提價2元,并且在開始銷售的前10天內(nèi)每天的銷售量與上市天數(shù)的關(guān)系是g(x)=150-5x(其中x表示天數(shù))
(1)寫出上市10天內(nèi)商品銷售價y與天數(shù)x的關(guān)系式;
(2)求該商品在上市10天內(nèi),哪一天的銷售金額最大?并求出最大金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.寫出下列直線的斜截式方程:
(1)直線的傾斜角為45°且在y軸上的截距是2;
(2)直線過點A(3,1)且在y軸上的截距是-1.

查看答案和解析>>

同步練習(xí)冊答案