11.已知平面α的法向量為$\overrightarrow n$=(3,-1,2),$\overrightarrow{AB}$=(-3,1,-2),則直線AB與平面α的位置關(guān)系為( 。
A.AB∥αB.AB?αC.AB與α相交D.AB?α或AB∥α

分析 由$\overrightarrow{n}$=-$\overrightarrow{AB}$,即可判斷出位置關(guān)系.

解答 解:∵$\overrightarrow{n}$=-$\overrightarrow{AB}$,
∴$\overrightarrow{n}$∥$\overrightarrow{AB}$,
∴直線AB與平面α的位置關(guān)系為相交.
故選:C.

點評 本題考查了線面位置關(guān)系、向量共線定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果a2>b2,那么下列不等式中正確的是( 。
A.a>0>bB.a>b>0C.|a|>|b|D.a>|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過拋物線y2=8x的焦點作傾斜角為45°的直線,交拋物線于A、B兩點.求:
(1)被拋物線截得的弦長|AB|;
(2)線段AB的中點到直線x+2=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的首項a1為常數(shù),且an+1=3n-2an,(n∈N*
(1)證明:{an-$\frac{{3}^{n}}{5}$}是等比數(shù)列;
(2)若a1=$\frac{3}{2}$,{an}中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在說明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二次函數(shù)f(x)=x2+mx+n(m,n∈R)的兩個零點分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n-2)2的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是用二分法求方程x2-2=0在[-2,2]的近似解的程序框圖,要求解的精確度為ε,①處填的內(nèi)容是f(x1)•f(m)<0,②處填的內(nèi)容是|x1-x2|<ε.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖程序的輸出結(jié)果為( 。
A.(4,3)B.(7,7)C.(7,10)D.(7,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.天氣預(yù)報說,未來三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計算機(jī)生成下列20組隨機(jī)數(shù),則未來三天恰有兩天下雨的概率大約是0.4.
757 220  582 092 103 000 181 249  414  993
010 732 680  596 761 835 463 521 186  289.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{5}{13}$,則$\frac{tan(α+\frac{π}{2})}{cos(α+π)}$=( 。
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{13}{12}$D.-$\frac{13}{12}$

查看答案和解析>>

同步練習(xí)冊答案