【題目】求最小的正整數(shù),使得存在一個(gè)的數(shù)陣滿足如下條件: (1)每一個(gè)數(shù)均屬于集合; (2)記為數(shù)陣中第行中的數(shù)組成的集合, 為第列中的數(shù)組成的集合,則,是4026個(gè)不同的集合.
【答案】13
【解析】
的最小值為13.
由題設(shè)知的子集數(shù).
當(dāng)時(shí),記子集族,
,
顯然,對(duì)于, ①
而有個(gè)子集,故恰有個(gè)子集不屬于子集族.
首先證明:對(duì)于,均有.
事實(shí)上,假設(shè)存在,有,則.此時(shí), ,.
結(jié)合式①,至少有個(gè)子集均不在子集族中,矛盾.
其次證明:要么對(duì),均有,要么對(duì),均有.
事實(shí)上,若存在集合,使得,由于對(duì)于,均有,且,故.
于是,結(jié)論成立.
設(shè).不妨設(shè).
于是,中元素個(gè)數(shù)小于的子集均不在子集族中;再結(jié)合式①,知這些子集也不在子集族中.
當(dāng)時(shí), 中元素個(gè)數(shù)小于的子集數(shù)為,矛盾;
當(dāng)時(shí), 中元素個(gè)數(shù)小于的子集數(shù)為,矛盾.
于是, ,即子集族中不包含元素個(gè)數(shù)小于6的子集.但恰有70個(gè)子集不在子集族中,故至少有個(gè)子集在子集族中.
結(jié)合式①,這些子集中的任意一個(gè)的補(bǔ)集(對(duì))的元素個(gè)數(shù)均大于6,且均不屬于子集族.于是,至少有個(gè)子集不在子集族中.但,矛盾.
因此,.
下面定義數(shù)表序列如下:,.
其中,為數(shù)表,其每個(gè)數(shù)均為.
易知,對(duì)每一個(gè),數(shù)表為數(shù)表,且其中的數(shù)均屬于集合.
接下來(lái)對(duì),用數(shù)學(xué)歸納法證明:滿足題設(shè)的兩個(gè)條件.
顯然, 滿足條件.
假設(shè)滿足題設(shè)條件,其行與列中的數(shù)組成的集合分別為,.
考慮.
對(duì)于,其行與列中的數(shù)組成的集合分別為
;
;
;
.
而數(shù)不在中出現(xiàn),因此,它們是兩兩不同的.
所以, 滿足題設(shè)條件.
故為20482048數(shù)表,且其中的數(shù)均屬于集合{1,2,…,13},對(duì)于,則的左上角20132013的數(shù)陣滿足題設(shè)的兩個(gè)條件.
綜上,的最小值為13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了進(jìn)一步激發(fā)同學(xué)們的學(xué)習(xí)熱情,某班級(jí)建立了數(shù)學(xué)英語(yǔ)兩個(gè)學(xué)習(xí)興趣小組,兩組的人數(shù)如下表所示:
組別 性別 | 數(shù)學(xué) | 英語(yǔ) |
男 | 5 | 1 |
女 | 3 | 3 |
現(xiàn)采用分層抽樣的方法(層內(nèi)采用簡(jiǎn)單隨機(jī)抽樣)從兩組中共抽取3名同學(xué)進(jìn)行測(cè)試.
(1)求從數(shù)學(xué)組抽取的同學(xué)中至少有1名女同學(xué)的概率;
(2)記ξ為抽取的3名同學(xué)中男同學(xué)的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線: 與拋物線: 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).
(1)若直線與拋物線交于點(diǎn), ,且,求;
(2)證明: 的面積與四邊形的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)說(shuō)法,其中正確的說(shuō)法是( )
A.殘差點(diǎn)分布的帶狀區(qū)域的寬度越窄相關(guān)指數(shù)越;
B.在刻畫回歸模型的擬合效果時(shí),相關(guān)指數(shù)的值越大,說(shuō)明擬合的效果越好;
C.在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位;
D.對(duì)分類變量與,若它們的隨機(jī)變量的觀測(cè)值越小,則判斷“與有關(guān)系”的把握程度越大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距,汽車從甲地勻速行駛到乙地,速度不超過(guò).已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(單位:)的平方成正比,且比例系數(shù)為,固定部分為元.
(1)把全程運(yùn)輸成本(元)表示為速度的函數(shù),并求出當(dāng),時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最;
(2)隨著汽車的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),元,此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中,為實(shí)參數(shù).求所有的數(shù)對(duì),使得函數(shù)在區(qū)間內(nèi)恰好有2011個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)員每次射擊命中不低于8環(huán)的概率為,命中8環(huán)以下的概率為,現(xiàn)用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率:先用計(jì)算器產(chǎn)生0至9之間取整數(shù)值的隨機(jī)數(shù).指定0、1、2、3、4、5表示命中不低于8環(huán),6、7、8、9表示命中8環(huán)以下,再以三個(gè)隨機(jī)數(shù)作為一組.代表三次射擊的結(jié)果,產(chǎn)生如下20組隨機(jī)數(shù):
524207443815510013429966027954
576086324409472796544917460962
據(jù)此估計(jì),該運(yùn)動(dòng)員三次射擊中有兩次命中不低于8環(huán),一次命中8環(huán)以下的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射箭選手最近100次射箭所得環(huán)數(shù)如下表所示.
甲選手100次射箭所得環(huán)數(shù)
環(huán)數(shù) | 7 | 8 | 9 | 10 |
次數(shù) | 15 | 24 | 36 | 25 |
乙選手100次射箭所得環(huán)數(shù)
環(huán)數(shù) | 7 | 8 | 9 | 10 |
次數(shù) | 10 | 20 | 40 | 30 |
以甲、乙兩名射箭選手這100次射箭所得環(huán)數(shù)的頻率作為概率,假設(shè)這兩人的射箭結(jié)果相互獨(dú)立.
(1)若甲、乙各射箭一次,所得環(huán)數(shù)分別為X,Y,分別求X,Y的分布列并比較的大;
(2)甲、乙相約進(jìn)行一次射箭比賽,各射3箭,累計(jì)所得環(huán)數(shù)多者獲勝.若乙前兩次射箭均得10環(huán),且甲第一次射箭所得環(huán)數(shù)為9,求甲最終獲勝的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com