已知橢圓G:+y2=1.過軸上的動點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G上的點(diǎn)到直線的最大距離;
(2)①當(dāng)實(shí)數(shù)時(shí),求A,B兩點(diǎn)坐標(biāo);
②將|AB|表示為m的函數(shù),并求|AB|的最大值.
(1);(2)①當(dāng)時(shí)點(diǎn)的坐標(biāo)分別為;② 2

試題分析:(1)設(shè)出與直線平行的直線,并與橢圓方程聯(lián)立消去(或)得關(guān)于的一元二次方程,令判別式為0解得的值(應(yīng)為2個(gè)值)。此時(shí)直線與橢圓相切,分析可知取負(fù)值時(shí)兩直線距離最大,此距離即為橢圓上的點(diǎn)到直線的最大距離。(2)①當(dāng)時(shí),切線的方程為,代入橢圓方程可得坐標(biāo)。②分析可知,由①可知當(dāng)時(shí)。當(dāng)時(shí),切線斜率存在設(shè)切線方程為,根據(jù)切線與圓相切即圓心到直線的距離等于半徑可得間的關(guān)系式。再將切線方程與橢圓方程聯(lián)立消去(或)得關(guān)于的一元二次方程,可知判別式應(yīng)大于0且可得根與系數(shù)的關(guān)系,根據(jù)弦長公式可得,根據(jù)間的關(guān)系式可消去一個(gè)量,可用基本不等式求最值。
(1)設(shè)直線,帶入橢圓方程得,
,(4分)
由圖形得直線與直線的距離為橢圓G上的點(diǎn)到直線的最大距離為(6分)
(2)①由題意知,.
當(dāng)時(shí),切線的方程為,點(diǎn)的坐標(biāo)分別為,此時(shí).(8分)
當(dāng)時(shí),同理可得.(9分)
②當(dāng)|m|>1時(shí),設(shè)切線的方程為
.(10分)
設(shè)兩點(diǎn)的坐標(biāo)分別為,則
.
又由與圓相切,得,即.(11分)
所以.(12分)
由于當(dāng)時(shí),,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526294171462.png" style="vertical-align:middle;" />,(13分)
且當(dāng)時(shí),,所以的最大值為2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.求證:

(1)圓心O在直線AD上;
(2)點(diǎn)C是線段GD的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為圓的兩條互相垂直的弦,且垂足為,則四邊形面積的最大值為(   )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓內(nèi)有一點(diǎn),過點(diǎn)作直線交圓,兩點(diǎn).
(1)當(dāng)經(jīng)過圓心時(shí),求直線的方程;
(2)當(dāng)弦被點(diǎn)平分時(shí),寫出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O中弦AB、CD相交于點(diǎn)F,AB=10,AF=2.若CF∶DF=1∶4,則CF的長等于(  )

A.       B.2        C.3       D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在圓上任取一點(diǎn),過點(diǎn)軸的垂線段,為垂足.設(shè)為線段的中點(diǎn).
(1)當(dāng)點(diǎn)在圓上運(yùn)動時(shí),求點(diǎn)的軌跡的方程;
(2)若圓在點(diǎn)處的切線與軸交于點(diǎn),試判斷直線與軌跡的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2013·重慶高考]設(shè)P是圓(x-3)2+(y+1)2=4上的動點(diǎn),Q是直線x=-3上的動點(diǎn),則|PQ|的最小值為(  )
A.6B.4C.3 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)作圓的弦,其中最短的弦長為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓x2+y2+2x=0和x2+y2﹣4y=0的公共弦的長度為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案