5.若 l、m是兩條直線,m⊥平面α,則“l(fā)⊥m”是“l(fā)∥α”的(  )
A.充分必要條件B.充分非必要條件
C.必要非充分條件D.既非充分又非必要條件

分析 l、m是兩條直線,m⊥平面α,則“l(fā)⊥m”可得l∥α或l?α,即可判斷出結(jié)論.

解答 解:l、m是兩條直線,m⊥平面α,則“l(fā)⊥m”可得l∥α或l?α,
反之,由m⊥平面α,“l(fā)∥α”,可得“l(fā)⊥m”.
∴“l(fā)⊥m”是“l(fā)∥α”的必要非充分條件,
故選:C.

點評 本題考查了空間線面位置關(guān)系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若($\sqrt{{2}^{{x}^{2}}}$+$\root{5}{{2}^{-2x}}$)n展開式的二項式系數(shù)中第二、第三、第四項的系數(shù)成一個等差數(shù)列,且展開式第六項是21,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從0,2中選一個數(shù)字,從3,5,7中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù).其中奇數(shù)的個數(shù)為(  )
A.18B.16C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=8x有一個公共的焦點F,且兩曲線的一個交點為P,若|PF|=5,則雙曲線的漸近線方程為(  )
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±2y=0D.2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)M(x1,y1),N(x2,y2)為兩個不同的點,直線l:ax+by+c=0,δ=$\frac{a{x}_{1}+b{y}_{1}+c}{a{x}_{2}+b{y}_{2}+c}$.有下列命題:
①不論δ為何值,點N都不在直線l上;
②若直線l垂直平分線段MN,則δ=1;
③若δ=-1,則直線l經(jīng)過線段MN的中點;
④若δ>1,則點M、N在直線l的同側(cè)且l與線段MN的延長線相交.
其中正確命題的序號是①③④(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{3+2i}{i}$的虛部是( 。
A.3iB.-3iC.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=alnx+$\frac{1-a}{2}$x2-x(a∈R,a≠1),若?x0∈(1,+∞).使得f(x0)=$\frac{a}{a-1}$,則a的取值范圍是( 。
A.(-$\sqrt{2}$-1,$\sqrt{2}$-1)B.(-$\sqrt{2}$-1,1)C.(1,+∞)D.(-$\sqrt{2}$-1,$\sqrt{2}$-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若tanα、tanβ是方程x${\;}^{2}+3\sqrt{3}$x+4=0的兩根,且-$\frac{π}{2}<α$,$β<\frac{π}{2}$,則α+β=-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知Sn是數(shù)列{an}的前n項和,a1=2,且4Sn=an•an+1,數(shù)列{bn}中,b1=$\frac{1}{4}$,且bn+1=$\frac{n_{n}}{(n+1)-_{n}}$,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=$\frac{{a}_{n}}{{2}^{\frac{1}{3_{n}}+\frac{2}{3}}}$(n∈N*),求{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案