14.若tanα、tanβ是方程x${\;}^{2}+3\sqrt{3}$x+4=0的兩根,且-$\frac{π}{2}<α$,$β<\frac{π}{2}$,則α+β=-$\frac{2π}{3}$.

分析 由tanα,tanβ是方程x2+3$\sqrt{3}$x+4=0的兩個(gè)根,根據(jù)韋達(dá)定理表示出兩根之和與兩根之積,表示出所求角度的正切值,利用兩角和的正切函數(shù)公式化簡后,將表示出的兩根之和與兩根之積代入即可求出tan(α+β)的值,然后根據(jù)兩根之和小于0,兩根之積大于0,得到兩根都為負(fù)數(shù),根據(jù)α與β的范圍,求出α+β的范圍,再根據(jù)特殊角的三角函數(shù)值,由求出的tan(α+β)的值即可求出α+β的值.

解答 解:依題意得tanα+tanβ=-3$\sqrt{3}$<0,tanα•tanβ=4>0,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{-3\sqrt{3}}{1-4}$=$\sqrt{3}$.
依題意知tanα<0,tanβ<0,又α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴α∈(-$\frac{π}{2}$,0),β∈(-$\frac{π}{2}$,0),
∴α+β∈(-π,0),
∴α+β=-$\frac{2π}{3}$.
故答案為:-$\frac{2π}{3}$

點(diǎn)評 此題考查學(xué)生靈活運(yùn)用韋達(dá)定理及兩角和的正切函數(shù)公式化簡求值,是一道中檔題.本題的關(guān)鍵是找出α+β的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{4},|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{5+2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若 l、m是兩條直線,m⊥平面α,則“l(fā)⊥m”是“l(fā)∥α”的( 。
A.充分必要條件B.充分非必要條件
C.必要非充分條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,且|$\overrightarrow$|=1,|$\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$|=1,則|$\overrightarrow{a}$|=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.?dāng)?shù)z滿足(1+z)(1+2i)=i,則復(fù)平面內(nèi)表示復(fù)數(shù)z的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a-$\frac{5}{2-i}$(a∈R)是純虛數(shù),則a的值為(  )
A.$-\frac{3}{2}$B.-2C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對于△ABC內(nèi)部一點(diǎn),存在實(shí)數(shù)λ,使得$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ($\overrightarrow{OA}+\overrightarrow{OC}$)恒成立,則△OBC與△ABC的面積之比是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\frac{tan(cosθ)}{tan(sinθ)}$>0.則θ是第一或三象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下面四個(gè)命題:
①已知函數(shù)f(x)=2sinx,在區(qū)間[0,π]上任取一點(diǎn)x0,則使得f(x0)<1的概率為$\frac{1}{3}$;
②函數(shù)y=sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位得到函數(shù)y=cos(2x+$\frac{π}{6}$)的圖象;
③命題“?x∈R,x2-x+1>0”的否定是“?x∈R,x2-x+1<0”
④若函數(shù)f(x)是定義在R上的奇函數(shù),且f(x+1)+f(2-x)=0,則f(2016)=0.
其中所有正確命題的序號是①②④.

查看答案和解析>>

同步練習(xí)冊答案