11.給出關于復數(shù)z=$\frac{2}{1+i}$的四個命題:p1:|z|=2;p2:z2=2i:p3:$\overline z=1+i$:p4.z的虛部為-1.下列命題中為真命題的是( 。
A.p1∧p2B.p1∨p2C.(?P3)∧p4D.(?p3)∨p4

分析 由復數(shù)z=$\frac{2}{1+i}$=1-i,分別判斷給定四個命題的真假,進而根據(jù)復合命題真假判斷的真值表,可得答案.

解答 解:∵復數(shù)z=$\frac{2}{1+i}$=1-i,
∴|z|=$\sqrt{2}$,故p1為假命題;
z2=-2i,故p2為假命題;
$\overline z=1+i$,故p3為真命題;
z的虛部為-1,故p4為真命題;
故p1∧p2,p1∨p2,(?P3)∧p4為假命題;
(?p3)∨p4為真命題,
故選:D.

點評 本題以命題的真假判斷與應用為載體,考查了復數(shù)的運算及幾何意義,復合命題,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=|x+1|.
(1)求不等式f(x)+1<f(2x)的解集M;
(2)設a,b∈M,證明:f(ab)>f(a)-f(-b).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求下列函數(shù)的定義域:
(1)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+$\sqrt{3x+1}$;            
(2)g(x)=$\frac{{\sqrt{2x-1}}}{x-1}$+(5x-4)0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設集合A={x|-1≤x+1≤6},B={x|m-1≤x<2m+1}.
(1)當x∈Z,求A的真子集的個數(shù)?
(2)若B⊆A,求實數(shù)m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.過點(0,1)且與雙曲線x2-y2=1只有一個公共點的直線有4條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,D是BC中點,E是AD中點,CE的延長線交AB于點F,若$\overrightarrow{DF}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ=(  )
A.$-\frac{2}{3}$B.$-\frac{3}{4}$C.$\frac{6}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知$\overrightarrow a$=(cosx,sinx),$\overrightarrow b$=(sinx+$\sqrt{2}$,cosx+$\sqrt{2})$,設f(x)=$\overrightarrow a•\overrightarrow b$.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)已知m∈R,p:?x∈R使不等式f(x)≥m2+2m成立;q:函數(shù)y=lg(x2+2mx+1)的定義域為R.若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在下列區(qū)間中,函數(shù)f(x)=lnx+x-3的零點所在的區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設函數(shù)f(x)=-|x|,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為(-∞,4].

查看答案和解析>>

同步練習冊答案