【題目】設(shè)點(diǎn)是邊長(zhǎng)為2的正三角形的三邊上的動(dòng)點(diǎn),則的取值范圍為______

【答案】

【解析】

中點(diǎn)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo),寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),分別討論點(diǎn).寫(xiě)出點(diǎn)坐標(biāo),由平面向量的坐標(biāo)表示分別表示出,結(jié)合平面向量數(shù)量積的坐標(biāo)運(yùn)算求得,再根據(jù)二次函數(shù)的性質(zhì)即可求得取值范圍.

根據(jù)題意,以中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo):

正三角形的邊長(zhǎng)為2,則,點(diǎn)三邊上的動(dòng)點(diǎn),

,當(dāng)在線段上時(shí),設(shè),

所以當(dāng)時(shí)取得最小值為;當(dāng)時(shí)取得最大值為2.

,當(dāng)在線段上時(shí),

直線的方程為,

設(shè),

,

所以當(dāng)時(shí)取得最小值為0;當(dāng)時(shí)取得最大值為2.

,當(dāng)在線段上時(shí),

直線的方程為,

設(shè),

,

,

,

,

所以當(dāng)時(shí)取得最小值為;當(dāng)時(shí)取得最大值為2.

綜上可知,的取值范圍為,

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的首項(xiàng),且時(shí),,,,

(Ⅰ),求,

(Ⅱ),證明:

(Ⅲ),求所有的正整數(shù),使得對(duì)于任意,均有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓 )的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)動(dòng)點(diǎn), 在橢圓上,且,記直線軸上的截距為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),若不等式的解集為1,4,且方程fx=x有兩個(gè)相等的實(shí)數(shù)根。

1求fx的解析式;

2若不等式fx>mx在上恒成立,求實(shí)數(shù)m的取值范圍;

3解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底)。

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若存在均屬于區(qū)間,且,使,證明:;

(Ⅲ)對(duì)于函數(shù)定義域內(nèi)的任意實(shí)數(shù),若存在常數(shù),,使得都成立,則稱直線為函數(shù)的分界線。試探究當(dāng)時(shí),函數(shù)是否存在“分界線”?若存在,請(qǐng)給予證明,并求出,的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。

①求所選2人都是男生的概率;

②求所選2人恰有1名女生的概率;

③求所選2人中至少有1名女生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫(huà)出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案