8.四面體ABCD中,AB、AC、AD兩兩垂直,且AB=1,AC=2,AD=4,則點(diǎn)A到平面BCD的距離是$\frac{4\sqrt{21}}{21}$.

分析 在△BCD中,利用余弦定理可得cos∠BCD,進(jìn)而得到sin∠BCD,S△BCD.設(shè)點(diǎn)A到平面BCD的距離是h,利用VA-BCD=VD-ABC,即可得出.

解答 解:如圖所示,
∵AB、AC、AD兩兩垂直,
∴在Rt△BAD中,BD=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,同理可得BC=$\sqrt{5}$,CD=2$\sqrt{5}$.
在△BCD中,cos∠BCD=$\frac{(\sqrt{5})^{2}+(2\sqrt{5})^{2}-(\sqrt{17})^{2}}{2×\sqrt{5}×2\sqrt{5}}$=$\frac{2}{5}$.
∴sin∠BCD=$\sqrt{1-(\frac{2}{5})^{2}}$=$\frac{\sqrt{21}}{5}$.
∴S△BCD=$\frac{1}{2}×\sqrt{5}×2\sqrt{5}×\frac{\sqrt{21}}{5}$=$\sqrt{21}$.
設(shè)點(diǎn)A到平面BCD的距離是h,
則VA-BCD=VD-ABC,
∴$\frac{1}{3}×h×{S}_{△BCD}$=$\frac{1}{3}×AD×$S△ABC
∴h=$\frac{4×\frac{1}{2}×1×2}{\sqrt{21}}$=$\frac{4\sqrt{21}}{21}$.
故答案為:$\frac{4\sqrt{21}}{21}$.

點(diǎn)評(píng) 本題考查了三棱錐的體積計(jì)算公式、線面垂直的性質(zhì)、勾股定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C經(jīng)過(guò)三點(diǎn)O(0,0),M1(1,1),M2(4,2).
(1)求圓C的方程;
(2)設(shè)直線x-y+m=0與圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等差數(shù)列{an}的第1項(xiàng)是5.6,第6項(xiàng)是20.6.求它的第4項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=lnx-x+1的零點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在極坐標(biāo)系中,求曲線ρ=2-sinθ-cosθ上一點(diǎn)到極點(diǎn)距離的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為C1:$\left\{\begin{array}{l}x=1+cosα\\ y=sinα\end{array}\right.(α$為參數(shù)),曲線C2:$\frac{x^2}{2}+{y^2}$=1.
(Ⅰ)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,求C1,C2的極坐標(biāo)方程;
(Ⅱ)射線θ=$\frac{π}{6}$(ρ≥0)與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在數(shù)列{an}中,a1=1,且an+1=2an+1
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若a1=3,3an=an-1,(n≥2),則an=($\frac{1}{3}$)n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若關(guān)于x的方程(4x+$\frac{5}{x}$)-|5x-$\frac{4}{x}$|=m在(0,+∞)內(nèi)恰有三個(gè)相異實(shí)根,則實(shí)數(shù)m的取值范圍為(6,$\frac{41}{10}\sqrt{5}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案