設函數(shù).
(Ⅰ)證明:時,函數(shù)在上單調(diào)遞增;
(Ⅱ)證明:.
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)導數(shù)法,令,,再由得出,從而得出結論;(Ⅱ)用分析法證明,要證,只需證,接著
構造新函數(shù),用導數(shù)法求解.
試題解析:(Ⅰ)證明:,則,,
∵,,
∴. (3分)
∴在單調(diào)遞增 ∴,即,
從而在上單調(diào)遞增;. (7分)
(Ⅱ)證明:要證,
只需證,即,證明如下:
設,則,(9分)
已知當時,,單調(diào)遞減;
當時,,單調(diào)遞增.
∴在上的最小值為,即, (12分)
又由(Ⅰ),當且時,,
∴,即不等式恒成立. (14分)
考點:導數(shù)法求解函數(shù)的單調(diào)性,最值, 構造法.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(≠0,∈R)
(Ⅰ)若,求函數(shù)的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若函數(shù)在處的切線垂直軸,求的值;
(Ⅱ)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅲ)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,且在點(1,)處的切線方程為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設函數(shù),若方程有且僅有四個解,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若,對一切恒成立,求的最大值;
(2)設,且、是曲線上任意兩點,若對任意,直線的斜率恒大于常數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com