設函數(shù).
(Ⅰ)證明:時,函數(shù)上單調(diào)遞增;
(Ⅱ)證明:.

(Ⅰ)詳見解析;(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)導數(shù)法,令,,再由得出,從而得出結論;(Ⅱ)用分析法證明,要證,只需證,接著
構造新函數(shù),用導數(shù)法求解.
試題解析:(Ⅰ)證明:,則,
,
.                               (3分)
單調(diào)遞增     ∴,即,
從而上單調(diào)遞增;.                                   (7分)
(Ⅱ)證明:要證,
只需證,即,證明如下:
,則,(9分)
已知當時,,單調(diào)遞減;
時,,單調(diào)遞增.
上的最小值為,即,    (12分)
又由(Ⅰ),當時,,
,即不等式恒成立. (14分)
考點:導數(shù)法求解函數(shù)的單調(diào)性,最值, 構造法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(≠0,∈R)
(Ⅰ)若,求函數(shù)的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)求證:當時,對所有的都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)處的切線垂直軸,求的值;
(Ⅱ)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(Ⅲ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),,且在點(1,)處的切線方程為
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)設函數(shù),若方程有且僅有四個解,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)若對一切恒成立,求的最大值;
(2)設,且、是曲線上任意兩點,若對任意,直線的斜率恒大于常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知函數(shù).
(1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1) 當時,求的單調(diào)區(qū)間;
(2) 若當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案