4.函數(shù)f(x)=3sinx+4cosx的最大值為(  )
A.25B.7C.5D.$\frac{1}{5}$

分析 利用兩角和差的正弦公式把函數(shù)y的解析式化為y=5sin(x+∅),從而求得函數(shù)y的最大值.

解答 解:函數(shù)y=4sinx+3cosx=5sin(x+∅),其中,cos∅=$\frac{4}{5}$,sin∅=$\frac{3}{5}$,故函數(shù)y的最大值為5,
故選:C.

點評 本題考查兩角和差的正弦公式,正弦函數(shù)的值域,把函數(shù)y的解析式化為y=5sin(x+∅),是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合M={-1,0,1},N={x|0≤x≤1},則M∩N=( 。
A.{0}B.{0,1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(  )
A.B.C.11πD.13π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x,傾斜角為α的直線l過點F(1,0),且與拋物線C交于A,B兩點,A,B在直線x=-1上的射影分別為A1,B1,記m=$\overrightarrow{F{A}_{1}}$$•\overrightarrow{F{B}_{1}}$,則( 。
A.m>0B.m<0C.m=0D.m值與α有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗公式P=$\frac{3}{5}$$\sqrt{t}$,Q=$\frac{1}{5}$t.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(萬元).求:
(Ⅰ)經(jīng)營甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達式;
(Ⅱ)怎樣將資金分配給甲、乙兩種商品,能使得總利潤y達到最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)f(x)在(-∞,0)上單調(diào)遞增,若f(-1)=0,則不等式xf(x)>0的解集是( 。
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出下列命題:
(1)已知兩平面的法向量分別為$\overrightarrow{m}$=(0,1,0),$\overrightarrow{n}$=(0,1,1),則兩平面所成的二面角為45°或135°;
(2)若曲線$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示雙曲線,則實數(shù)k的取值范圍是(-∞,-4)∪(1,+∞);
(3)已知雙曲線方程為x2-$\frac{{y}^{2}}{2}$=1,則過點P(1,1)可以作一條直線l與雙曲線交于A,B兩點,使點P是線段AB的中點.
其中正確命題的序號是(1)(2)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2-(m-1)x+2m
(1)若函數(shù)f(x)>0在(0,+∞)上恒成立,求m的取值范圍;
(2)若函數(shù)f(x)在(0,1)內(nèi)有零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\frac{cos6x}{{2}^{x}-{2}^{-x}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案