7.已知實數(shù)x,y滿足2x-y=4,則4x+${({\frac{1}{2}})^y}$的最小值為8.

分析 運用指數(shù)的運算性質(zhì)和基本不等式,即可得到所求最小值,注意等號成立的條件.

解答 解:由2x-y=4,
4x+${({\frac{1}{2}})^y}$=22x+2-y,
且22x>0,2-y>0,可得
22x+2-y≥2$\sqrt{{2}^{2x}•{2}^{-y}}$=2$\sqrt{{2}^{2x-y}}$=2$\sqrt{{2}^{4}}$=8.
當且僅當22x=2-y,又2x-y=4,
即有x=1,y=-2時,取得最小值8.
故答案為:8.

點評 本題考查基本不等式的運用:求最值,同時考查指數(shù)的運算性質(zhì),考查變形和化簡能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測指標劃分為:指標大于或者等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結(jié)果統(tǒng)計如表:
測試指標[70,76)[76,82)[82,88)[88,94)[94,100)
元件甲81240328
元件乙71840296
(Ⅰ)試分別估計元件甲,乙為正品的概率;
(Ⅱ)在(Ⅰ)的前提下,記X為生產(chǎn)1件甲和1件乙所得的正品數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知直線l:y=k(x+2)與拋物線C:y2=8x相交于A、B兩點,且A、B兩點在拋物線C準線上的射影分別是M、N,若|AM|=2|BN|,則k的值是( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.2$\sqrt{2}$D.$\frac{2}{3}$$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)a>-38,P=$\sqrt{a+40}$-$\sqrt{a+41}$,Q=$\sqrt{a+38}$-$\sqrt{a+39}$,則P與Q的大小關(guān)系為P>Q.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.關(guān)于x的一元二次方程ax2+2x-1=0有兩個不相等正根的充要條件是( 。
A.a<-1B.-1<a<0C.a<0D.0<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準備在GH上的一點B的正北方向的A處建一倉庫,設(shè)AB=ykm,并在公路北側(cè)建造邊長為xkm的正方形無頂中轉(zhuǎn)站CDEF(其中邊EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y關(guān)于x的函數(shù)解析式,并指出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價為1萬元/km,兩條道路造價為3萬元/km,問:x取何值時,該公司建中轉(zhuǎn)站圍墻和兩條道路總造價M最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)集合M={x|(x+1)(x+2)<0},集合N=$\left\{{x\left|{{2^x}≥\frac{1}{4}}\right.}\right\}$,則 M∪N=(  )
A.{x|x≥-2}B.{x|x>-1}C.{x|x<-1}D.{x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合P={x|x2-4<0},則Q={x|x=2k+1,k∈Z},則P∩Q=( 。
A.{-1,1}B.[-1,1]C.{-1,-3,1,3}D.{-3,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知不等式|x+3|<2x+1的解集為{x|x>m}.
(Ⅰ)求m的值;
(Ⅱ)設(shè)關(guān)于x的方程|x-t|+|x+$\frac{1}{t}$|=m(t≠0)有實數(shù)根,求實數(shù)t的值.

查看答案和解析>>

同步練習冊答案