(本題滿分10分)
已知四棱錐的底面為直角梯形,//,,底面,且.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值的大小.
(I)見解析;(II)。
解析試題分析:(I)證明平面,在已知的基礎(chǔ)上,根據(jù)線面垂直的判定定理關(guān)鍵是證明即可.
(II)再(1)的基礎(chǔ)上易證,所以可知為所求二面角的平面角,然后解三角形求此角即可.
(I)
………………………………4分;
(II)
………………………………8分;.
故為所求二面角的平面角,…………………10分..
考點:線面垂直,線線垂直的判定與性質(zhì),二面角.
點評:線面垂直的判定定理:一條直線垂直于這個平面內(nèi)的兩條相交直線,那么這條直線垂直這個平面.線面垂直的性質(zhì)定理:一條直線垂直這個平面,這條直線垂直這個平面內(nèi)的任意一條直線.
科目:高中數(shù)學(xué) 來源: 題型:解答題
正方形ABCD中,點O是對角線AC的中點,點P是對角線AC上一動點.
(1)如圖1,當(dāng)點P在線段OA上運動時(不與點A、O重合) ,PE⊥PB交線段CD于點E,PF⊥CD于點E.
①判斷線段DF、EF的數(shù)量關(guān)系,并說明理由;
②寫出線段PC、PA、CE之間的一個等量關(guān)系,并證明你的結(jié)論;
(2)如圖2,當(dāng)點P在線段OC上運動時(不與點O、C重合),PE⊥PB交直線CD于點E,PF⊥CD于點E.判斷(1)中的結(jié)論①、②是否成立?若成立,說明理由;若不成立,寫出相應(yīng)的結(jié)論并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分11分)
如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖為半徑等于1的圓.試求這個幾何體的側(cè)面積與體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點.
(1)求證:平面
(2)在線段上(含、端點)確定一點,使得平面,并給出證明;
(3)一只小飛蟲在幾何體內(nèi)自由飛,求它飛入幾何體內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,有三個生活小區(qū)(均可看成點)分別位于三點處,,到線段的距離,(參考數(shù)據(jù): ). 今計劃建一個生活垃圾中轉(zhuǎn)站,為方便運輸,準(zhǔn)備建在線段(不含端點)上.
(1)設(shè),試將到三個小區(qū)距離的最遠(yuǎn)者表示為的函數(shù),并求的最小值;
(2)設(shè),試將到三個小區(qū)的距離之和表示為的函數(shù),并確定當(dāng)取何值時,可使最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
E、F分別是AB、CD上的點,且EF∥BC.設(shè)AE =,G是BC的中點.
沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)=2時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;
(3)當(dāng)取得最大值時,求二面角D-BF-E的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com