【題目】如圖,已知拋物線C頂點在坐標原點,焦點F在Y軸的非負半軸上,點是拋物線上的一點.

(1)求拋物線C的標準方程

(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.

【答案】(1);(2)定值4

【解析】

1)設(shè)出拋物線方程,將M坐標代入,計算方程,即可。(2)設(shè)出直線PQ的方程,結(jié)合得到,計算S的坐標,結(jié)合點到直線距離公式,計算所求三角形高,結(jié)合直線截拋物線所得弦長,計算PQ,計算面積,即可。

1)設(shè)拋物線的方程為M(-2,1)點坐標代入方程中,解得

2)設(shè),設(shè)直線PQ的方程為,代入拋物線方程,得到,則,結(jié)合,而

,代入,得到所以

,解得

P點的切線斜率為,過Q切線斜率為,則PS的方程為,QS的方程為,聯(lián)解這兩個方程,得到S的坐標為,故點S的直線PQ的距離為,而PQ的長度為,故面積為

,故為定值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級學(xué)生會主席團有共有名同學(xué)組成,其中有名同學(xué)來自同一班級,另外兩名同學(xué)來自另兩個不同班級.現(xiàn)從中隨機選出兩名同學(xué)參加會議,則兩名選出的同學(xué)來自不同班級的概率為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在首屆中國國際商品博覽會期間,甲、乙、丙三家供貨公司各簽訂了兩個供貨合同,已知這三家公司供貨合同中金額分別是300萬元和600萬元、300萬元和900萬元、600萬元和900萬元,甲看了乙的供貨合同說:我與乙的供貨合同中金額相同的合同不是600萬元,乙看了丙的供貨合同說:我與丙的供貨合同中金額相同的合同不是300萬元,丙說:我的兩個供貨合同中金額之和不是1500萬元,則甲簽訂的兩個供貨合同中金額之和是(

A.900B.1500萬元C.不能確定D.1200萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是正整數(shù).在一個十進制位數(shù)的各位數(shù)字中,若含有數(shù)字8,則在每個數(shù)字8的前一位數(shù)字就不能是數(shù)字3(即不能出現(xiàn)38字樣).試求出所有這樣的位數(shù)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺延遲退休年齡政策為了了解人們對延遲退休年齡政策的態(tài)度,責(zé)成人社部進行調(diào)研.人社部從網(wǎng)上年齡在15-65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計結(jié)果如下:

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過005的前提下認為以45歲為分界點的不同人群對延遲退休年齡政策的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

總計

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

2)若以45歲為分界點,從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項活動、現(xiàn)從這8人中隨機抽2人.記抽到45歲以上的人數(shù)為X,求隨機變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】吸煙有害健康,吸煙會對身體造成傷害,哈爾濱市于2012531日規(guī)定室內(nèi)場所禁止吸煙.美國癌癥協(xié)會研究表明,開始吸煙年齡X分別為16歲、18歲、20歲和22歲者,其得肺癌的相對危險度Y依次為15.1012.81,9.723.21;每天吸煙支數(shù)U分別為1020,30者,其得肺癌的相對危險度V分別為7.5,9.516.6,用表示變量XY之間的線性相關(guān)系數(shù),用r2表示變量UV之間的線性相關(guān)系數(shù),則下列說法正確的是(  )

A.r1r2B.r1r20

C.0r1r2D.r10r2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,已知圓C的圓心,半徑r=3.

1)求圓C的極坐標方程;

2)若Q點在圓C上運動,POQ的延長線上,且,求動點P的軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程與直線的普通方程;

(2)直線與曲線交于兩點,記弦的中點為,點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費 (單位:千元)對年銷售量 (單位: )和年利潤 (單位:千元)的影響.對近年的年宣傳費 和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

表中 , .附:對于一組數(shù)據(jù) , , ,其回歸直線 的斜率和截距的最小二乘法估計分別為 , .

1)根據(jù)散點圖判斷, 在哪一個適宜作為年銷售量 關(guān)于年宣傳費 的回歸方程類型?(給出判斷即可,不必說明理由)

2)根據(jù)1小問的判斷結(jié)果及表中數(shù)據(jù),建立 關(guān)于 的回歸方程;

3)已知這種產(chǎn)品的年利潤 的關(guān)系為 .根據(jù)2小問的結(jié)果回答下列問題:

2年宣傳費 時,年銷售量及年利潤的預(yù)報值是多少?

3年宣傳費為何值時,年利潤的預(yù)報值最大?

查看答案和解析>>

同步練習(xí)冊答案