【題目】是正整數(shù).在一個十進制位數(shù)的各位數(shù)字中,若含有數(shù)字8,則在每個數(shù)字8的前一位數(shù)字就不能是數(shù)字3(即不能出現(xiàn)38字樣).試求出所有這樣的位數(shù)的個數(shù).

【答案】

【解析】

考慮滿足條件的位數(shù)的個數(shù),分以下兩種情形.

(1)當個位數(shù)字不是8時,前位數(shù)有種取法,個位數(shù)字有9種取法,從而,該位數(shù)有種取法.

(2)當個位數(shù)字是8時,可分成如下三類:

8 8 8 8(各位數(shù)字全是8),

非3亦非8 8 8 8 8

非3亦非8 8 8 8 8.

由此可知,個位數(shù)字為8位允許的正整數(shù)的個數(shù)是

由(1)和(2)得

. ①

由式①得

. ②

由②-①得

,

. ③

易知.

由式③知,

其中,為待定常數(shù),則

解得.

.

這就是符合題意的位正整數(shù)的個數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)x=1時取得極值,求實數(shù)a的值;

2)當0a1時,求零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ①若,則的零點有_____個;②若的值域為,則實數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有限數(shù)列,定義集合為數(shù)列的伴隨集合.

(Ⅰ)已知有限數(shù)列和數(shù)列.分別寫出的伴隨集合;

(Ⅱ)已知有限等比數(shù)列,求的伴隨集合中各元素之和;

(Ⅲ)已知有限等差數(shù)列,判斷是否能同時屬于的伴隨集合,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),曲線的直角坐標方程為.

1)求的極坐標方程;

2)在以為極點,軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P-ABCD中,平面ABCD,,,,EPD的中點,點FPC上,且

1)求證:平面平面PAD

2)求二面角F-AE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C頂點在坐標原點,焦點F在Y軸的非負半軸上,點是拋物線上的一點.

(1)求拋物線C的標準方程

(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數(shù)據(jù)的散點圖,如圖所示.

1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合的關系,請計算相關系數(shù)并加以說明(若,則線性相關程度很高,可用線性回歸模型擬合);

2)求關于的回歸方程,并預測液體肥料每畝使用量為千克時,西紅柿畝產(chǎn)量的增加量約為多少?

附:相關系數(shù)公式,回歸方程中斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每年3月21日是世界睡眠日,良好的睡眠狀況是保持身體健康的重要基礎.為了做好今年的世界睡眠日宣傳工作,某社區(qū)從本轄區(qū)內(nèi)同一年齡層次的人員中抽取了100人,通過問詢的方式得到他們在一周內(nèi)的睡眠時間(單位:小時),并繪制出如右的頻率分布直方圖:

(Ⅰ)求這100人睡眠時間的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點值代替,結果精確到個位);

(Ⅱ)由直方圖可以認為,人的睡眠時間近似服從正態(tài)分布,其中近似地等于樣本平均數(shù),近似地等于樣本方差,.假設該轄區(qū)內(nèi)這一年齡層次共有10000人,試估計該人群中一周睡眠時間位于區(qū)間(39.2,50.8)的人數(shù).

附:.若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

同步練習冊答案