12.某市運會期間30位志愿者年齡數(shù)據(jù)如表:
年齡(歲)人數(shù)(人)
197
212
283
304
315
323
406
合計30
(1)求這30位志愿者年齡的眾數(shù)與極差;
(2)以十位為莖,個位數(shù)為葉,作出這30位志愿者年齡的莖葉圖;
(3)求這30位志愿者年齡的方差.

分析 (1)根據(jù)表格讀出即可;(2)按要求作出莖葉圖即可;(3)根據(jù)求平均數(shù)和方差的公式求出即可.

解答 解:(1)眾數(shù)為19,極差為21.…2分,
(2)莖葉圖如圖下:$\begin{array}{l}1\\ 2\\ 3\\ 4\end{array}\left|\begin{array}{l}9\;9\;9\;9\;9\;9\;9\\ 1\;1\;\;8\;8\;\;8\;\\ 0\;0\;0\;0\;1\;1\;1\;1\;1\;2\;2\;2\\ 0\;0\;0\;0\;0\;0\end{array}\right.$.…5分
(3)年齡的平均數(shù)為:
$\frac{19×7+28×3+21×2+30×4+31×5+32×3+40×6}{30}=\frac{870}{30}=29$,…8分
故這30位志愿者年齡的方差為:
$\frac{1}{30}[{{{(19-29)}^2}×7+3×{1^2}+2×{8^2}+4×{1^2}+{2^2}×5+{3^2}×3+{{11}^2}×6}]=\frac{1608}{30}=\frac{268}{5}$.…12分

點評 本題考查了眾數(shù)以及極差的定義,考查平均數(shù)和方差的公式,考查莖葉圖,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線x2=2py(p>0)的頂點到焦點的距離為1,過點P(0,p)作直線與拋物線交于A(x1,y1),
B(x2,y2)兩點,其中x1>x2
(1)若直線AB的斜率為$\frac{1}{2}$,過A,B兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程;
(2)若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,是否存在異于點P的點Q,使得對任意λ,都有$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$),若存在,求Q點坐標;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在各項為正數(shù)的數(shù)列{an}中,數(shù)列{an}的前n項和Sn滿足Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$).求a1,a2,a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|ex>$\sqrt{e}$},集合B={x|lgx≤-lg2},則A∪B等于( 。
A.RB.[0,+∞)C.(0,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若復(fù)數(shù)z滿足z=1-i+$\frac{1}{1-i}$,則z的虛部為( 。
A.-$\frac{1}{2}$iB.-$\frac{1}{2}$C.$\frac{1}{2}$iD.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項和為Sn,且a3=5,S15=225.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=2${\;}^{{a}_{n}}$+2n,{bn}的前n項和為Tn,試比較Tn與(4n+$\frac{1}{n}$+1)Sn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在直角坐標系xOy中,點P是單位圓上的動點,過點P作x軸的垂線與射線y=$\sqrt{3}$x(x≥0)交于點Q,與x軸交于點M.記∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知變量x,y滿足$\left\{\begin{array}{l}{0≤x≤3}\\{x+y≥0}\\{x-y+3≥0}\end{array}\right.$則z=2x-3y的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.關(guān)于x的一元二次方程x2+2mx+5m-6=0,若m是從區(qū)間[0,5]任取的一個數(shù),則上述方程有實根的概率為$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案