17.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大;
(3)求四面體E-BGC的體積.

分析 (1)根據(jù)線面平行的判定定理進行判斷即可.
(2)根據(jù)二面角的定義,作出二面角的平面角,進行求解即可.
(3)根據(jù)三棱錐的體積公式進行求解即可.

解答 解:(1)由已知AB⊥平面ACD,DE⊥平面ACD,∴AB∥ED,
設(shè)F為線段CE的中點,H是線段CD的中點,
連接FH,則FH∥=$\frac{1}{2}$ED,
∴FH∥=AB,∴四邊形ABFH是平行四邊形,
∴BF∥AH,
由BF?平面ACD內(nèi),AH?平面ACD,
∴BF∥平面ACD;…(4分)
(2)將EB,DA分別延長相較于點M,連接MC
可證得△DCF,△ECF均為直角三角形,且DC⊥CF,EC⊥CF
∴∠ECD即為所求二面角的平面角
在Rt△CDE中,$CD=DE=2,CE=2\sqrt{2}$
∴∠ECD=45°
(3)連接BG、CG、EG,得三棱錐C-BGE,由ED⊥平面ACD,
∴平面ABED⊥平面ACD,又CG⊥AD,
∴CG⊥平面ABED,
則${V_{E-BGC}}={V_{C-BGE}}=\frac{1}{3}{S_{△BGE}}×GC=\frac{1}{3}×\frac{3}{2}×\sqrt{3}=\frac{{\sqrt{3}}}{2}$.

點評 本題主要考查線面平行,二面角的求解以及空間幾何體的體積的計算,利用二面角平面角的定義以及三棱錐的體積公式進行轉(zhuǎn)化是解決本題的關(guān)鍵.綜合性較強.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,異面直線AB,CD互相垂直,CF是它們的公垂線段,且F為AB的中點,作DE$\stackrel{∥}{=}$CF,連接AC,BD,G為BD的中點,AB=AC=AE=BE=2.
(1)在平面ABE內(nèi)是否存在一點H,使得AC∥GH?若存在,求出點k所在的位置,若不存在,請說明理由;
(2)求二面角A-DB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,且AE∥CD.
(Ⅰ)證明:P、B、F、A四點共圓;
(Ⅱ)若四邊形PBFA的外接圓的半徑為$\sqrt{13}$,且PC=CF=FD=3,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某研究性學習小組對4月份晝夜溫差大小與花卉種子發(fā)芽多少之間的關(guān)系研究,記錄了4月1日至4月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),如下表:
日 期4月1日4月2日4月3日4月4日4月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)請根據(jù)表中 4月2日至4月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$;若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,請用 4月1日和4月5日數(shù)據(jù)檢驗?zāi)闼玫木性回歸方程是否可靠?
(Ⅱ)從4月1日至4月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(參考公式:回歸直線的方程是$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.為及時了解適齡公務(wù)員對開放生育二胎政策的態(tài)度,某部門隨機調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如表:
(1)完成表格,并判斷是否有99%以上的把握認為“生二胎意愿與性別有關(guān)”,并說明理由;
(2)現(xiàn)把以上頻率當作概率,若從社會上隨機獨立抽取三位30歲到40歲的男公務(wù)員訪問,求這三人中至少有一人有意愿生二胎的概率.
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機邀請兩位來參加座談,設(shè)邀請的2人中來自省女聯(lián)的人數(shù)為X,求X的公布列及數(shù)學期望E(X).
男性公務(wù)員女性公務(wù)員總計
有意愿生二胎3015
無意愿生二胎2025
總計
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖所示,A,B,C表示3種開關(guān),若在某段時間內(nèi)它們正常工作的概率分別為0.9,0.8,0.7,那么此系統(tǒng)的可靠性為( 。
A.0.504B.0.994C.0.496D.0.06

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.臨沂市某高二班主任對全班50名學生進行了作業(yè)量多少的調(diào)查:喜歡玩游戲的27人中,認為作業(yè)多的有18人,不喜歡玩游戲的同學中認為作業(yè)多的有8人.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)試通過計算說明在犯錯誤的概率不超過多少的前提下認為喜歡玩游戲與作業(yè)量的多少有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,將繪有函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為$\sqrt{15}$,則f(-1)=( 。
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{4}{x}+1,x>0}\\{-x-\frac{4}{x}+1,x<0}\end{array}\right.$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)f(x)在區(qū)間(0,2]和[2,+∞)上的增減性.

查看答案和解析>>

同步練習冊答案