5.某研究性學習小組對4月份晝夜溫差大小與花卉種子發(fā)芽多少之間的關(guān)系研究,記錄了4月1日至4月5日的每天晝夜溫差與實驗室每天100顆種子浸泡后的發(fā)芽數(shù),如下表:
日 期4月1日4月2日4月3日4月4日4月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)請根據(jù)表中 4月2日至4月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$;若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,請用 4月1日和4月5日數(shù)據(jù)檢驗你所得的線性回歸方程是否可靠?
(Ⅱ)從4月1日至4月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(參考公式:回歸直線的方程是$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata$=$\overline{y}$-b$\overline{x}$)

分析 (Ⅰ)先求出溫差x和發(fā)芽數(shù)y的平均值,即得到樣本中心點,利用最小二乘法得到線性回歸方程的系數(shù),根據(jù)樣本中心點在線性回歸直線上,得到a的值,得到線性回歸方程;分別驗證當x=10及x=8時,求得y值,分別驗證|y-23|<2及|y-16|<2線性回歸方程是否可靠;
(Ⅱ)利用列舉法求出基本事件的個數(shù),即可求出事件“m,n均不小于25”的概率.

解答 解:(Ⅰ) $\overline x=\frac{1}{3}(11+13+12)=12$,$\overline y=\frac{1}{3}(25+30+26)=27$,$3\overline x\overline y=972$.
$\sum_{i=1}^3{{X_i}{Y_i}}=11×25+13×30+12×26=977$,$\sum_{i=1}^3{X_i^2}={11^2}+{13^2}+{12^2}=434$,$3{\overline x^2}=432$.
由公式,求得$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\bar x•\bar y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\bar x}^2}}}}=\frac{977-972}{434-432}=\frac{5}{2}$,$\widehata=\bar y-b\overline{x}=27-\frac{5}{2}×12=-3$.
所以y關(guān)于x的線性回歸方程為$\hat y=\frac{5}{2}x-3$.--------------------------------(5分)
當x=10時,y=$\frac{5}{2}×10-3$=22,|22-23|<2;
當x=8時,y=$\frac{5}{2}×8-3$=17,|17-16|<2.
所以,該研究所得到的線性回歸方程是可靠的.-------------------------------(7分)
(Ⅱ)m,n的所有取值情況有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),即基本事件總數(shù)為10.
設(shè)“m,n均不小于25”為事件A,則事件A包含的基本事件為(25,30),(25,26),(30,26).
所以P(A)=$\frac{3}{10}$,故事件A的概率為$\frac{3}{10}$.------------------------------------(12分)

點評 本題考查求線性回歸方程,并且用線性回歸方程來預報y的值,從而得到預報值與檢驗數(shù)據(jù)的誤差,得到線性回歸方程是否可靠,考查古典概型概率的計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.在平向直角坐標系中,直線l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=1+tsinα}\end{array}\right.$ (t為參數(shù),0≤α<π),在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,曲線C:ρ=4cosθ
(I)求曲線C的直角坐標方程;
(Ⅱ)已知點P(2,1),若直線l與曲線C交于A,B兩點,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求tanα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,AB是半圓的直徑,C是AB延長線上一點,CD切半圓于點D,CD=2,DE⊥AB,垂足為E,且AE:EB=4:1求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,其中AB=AC,∠ABD=∠CBD,AC與BD交于點F,直線BC與AD交于點E.
(Ⅰ)證明:AC=CE;
(Ⅱ)若DF=2,BF=4,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在極坐標系中,曲線ρcos(θ-$\frac{π}{3}}$)=1與極軸的交點到極點的距離為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.已知共有75名非體育迷,且在45名男觀眾中,有15名是體育迷.
(1)根據(jù)已知條件列出2×2列聯(lián)表;
(2)并據(jù)此資料你覺得是否有理由認為“體育迷”與性別有關(guān)?
附:k2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
P(k2≥k00.050.01
k03.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求四面體E-BGC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖:PA為⊙O的切線,A為切點,割線PBC過圓心O,PA=10,PB=5,則AC長為$6\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.兩直線ρsin(θ+$\frac{π}{4}$)=2015,ρsin(θ-$\frac{π}{4}$)=2016的位置關(guān)系是相交.

查看答案和解析>>

同步練習冊答案