【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)的和為Sn , 已知a1=1, =12.
(1)求{an}的通項(xiàng)公式an;
(2)bn= ,bn的前n項(xiàng)和Tn , 求證;Tn< .
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,則S2=2a1+d,S3=3a1+3d,S4=4a1+6d,
∵ =12,
∴3a1+3d=12,即3+3d=12,
解得d=3,
∴an=1+3(n﹣1)=3n﹣2
(2)解:bn= = ( ),
∴Tn= (1﹣ )+ ( ﹣ )+ ( ﹣ )+…+ ( )
= (1﹣ + ﹣ + ﹣ +…+ )
= (1﹣ )
=
∴Tn= < =
【解析】(1)利用前n項(xiàng)和公式列方程計(jì)算公差d,從而得出an;(2)bn= = ( ),使用裂項(xiàng)法求出Tn即可得出結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)在上是增函數(shù),函數(shù)y=f(x+2)是偶函數(shù),則( )
A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)
C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )
A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個
C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)滿足,且當(dāng)時,,對任意R,均有.
(1)求證:;
(2)求證:對任意R,恒有;
(3)求證:是R上的增函數(shù);
(4)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合 ,P={x|﹣1≤x≤4},則(UM)∩P等于( )
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3≤x≤4}
D.{x|3<x≤4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中是實(shí)數(shù).
(l)若 ,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若為函數(shù)圖像上一點(diǎn),且直線與相切于點(diǎn),其中為坐標(biāo)原點(diǎn),求的值;
(3) 設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若在定義域內(nèi)恒成立,則稱函數(shù)具有某種性質(zhì),簡稱“函數(shù)”.當(dāng)時,試問函數(shù)是否為“函數(shù)”?若是,請求出此時切點(diǎn)的橫坐標(biāo);若不是,清說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個半徑為1的半球材料中截取兩個高度均為的圓柱,其軸截面如圖所示.設(shè)兩個圓柱體積之和為.
(1)求的表達(dá)式,并寫出的取值范圍;
(2)求兩個圓柱體積之和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1∶3,且成績分布在[40,100],分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎.按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(1)求a的值,并計(jì)算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認(rèn)為“獲獎與學(xué)生的文、理科有關(guān)”?
文科生 | 理科生 | 合計(jì) | |
獲獎 | 5 | ||
不獲獎 | |||
合計(jì) | 200 |
附表及公式:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E分別是△ABC的邊BC的三等分點(diǎn),設(shè) =m, =n,∠BAC= .
(1)用 、 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com