【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

男生

5

女生

10

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯(cuò)概率不超過0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說明你的理由;

3)在上述喜好體育運(yùn)動(dòng)的6人中隨機(jī)抽取兩人,求恰好抽到一男一女的概率.

參考公式:

獨(dú)立性檢驗(yàn)臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】1)列聯(lián)表見解析;(2)能,理由見解析;(3.

【解析】

(1)利用求得喜好體育運(yùn)動(dòng)的人數(shù)后,根據(jù)表格中數(shù)據(jù)可得表格中其它數(shù)據(jù);

(2)求出觀測(cè)值后,利用臨界值表可得結(jié)論;

(3)用列舉法得到基本事件的總數(shù)以及所求事件包含的結(jié)果數(shù),然后用古典概型概率公式計(jì)算可得.

1)喜好體育運(yùn)動(dòng)的人數(shù)為:,列聯(lián)表補(bǔ)充如下:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

男生

20

5

女生

10

15

2)∵

∴能在犯錯(cuò)概率不超過0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān).

36人中有男生4人,設(shè)為,,,女生2人,設(shè)為,

隨機(jī)抽取兩人所有的情況為:,,,,,,,,,,,,,,共15種.

其中一男一女包含8種情況,故概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于兩個(gè)定義域相同的函數(shù)、,若存在實(shí)數(shù),,使則稱函數(shù)是由“基函數(shù)”生成的.

1)若生成一個(gè)偶函數(shù),求的值;

2)若是由生成,其中.的取值范圍;

3)利用“基函數(shù)”生成一個(gè)函數(shù),使得滿足:

①是偶函數(shù),②有最小值,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱, 的中點(diǎn).

1證明 平面;

2 ,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1和直線C2的極坐標(biāo)方程;

(2)若直線C2與曲線C1交于A,B兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若四面體的三組對(duì)棱分別相等,即,,給出下列結(jié)論:

①四面體每組對(duì)棱相互垂直;

②四面體每個(gè)面的面積相等;

③從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于而小于;

④連接四面體每組對(duì)棱中點(diǎn)的線段相互垂直平分;

⑤從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng).

其中正確結(jié)論的個(gè)數(shù)是(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為平行四邊形ABCD所在平面外一點(diǎn),M,N分別為AB,PC的中點(diǎn),平面PAD平面PBC=.

(1)求證:BC∥;

(2)MN與平面PAD是否平行?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AD⊥平面ABE,AEEBBC2,FCE上的點(diǎn),且BF⊥平面ACE.

(1)求證:AE⊥平面BCE;

(2)求證:AE∥平面BFD;

(3)求三棱錐CBGF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)求:

1的單調(diào)區(qū)間

2的單調(diào)區(qū)間在[0,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號(hào)平方再除以2,奇數(shù)項(xiàng)是序號(hào)平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

同步練習(xí)冊(cè)答案