已知函數(shù)g(x)=
1
4x+2
(x∈R).
(1)求:g(x)+g(1-x)的值;
(2)求:g(
1
m
)+g(
2
m
)+g(
3
m
)+…+g(
m-1
m
)+g(
m
m
)的值.
(3)設函數(shù)f(x)=-g(-log16x),a,b為常數(shù)且0<a<b,在下列四個不等關(guān)系中選出一個你認為正確的關(guān)系式,并加以說明.
①f(a)<f(
a+b
2
)<f(ab)        
②f(a)<f(b)<f(
ab

③f(
ab
)<f(
a+b
2
)<f(a)      
④f(b)<f(
a+b
2
)<f(
ab
).
考點:指數(shù)函數(shù)綜合題
專題:函數(shù)的性質(zhì)及應用
分析:(1)代入解析式求解即可;
(2)利用(1)的結(jié)論解答即可;
(3)把f(x)的解析式解出來判斷其單調(diào)性,然后判斷證明即可.
解答: 解:(1)g(x)+g(1-x)=
1
4x+2
+
1
41-x+2
=
1
4x+2
+
4x
2(2+4x)
=
2+4x
2(2+4x)
=
1
2
,
(2)g(
1
m
)+g(
2
m
)+g(
3
m
)+…+g(
m-1
m
)+g(
m
m
)=[g(
1
m
)+g(
m-1
m
)]+[g(
2
m
)+g(
m-2
m
)+…+g(
m
m

=
m-1
2
×
1
2
+
1
4+2
=
3m-1
12
;,
(3)因為函數(shù)g(x)=
1
4x+2
(x∈R),函數(shù)f(x)=-g(-log16x),
f(x)=-
x
2
x
+1
(x>0)
為減函數(shù),
又0<a<b,
∴b>
a+b
2
ab
,
故④確.
點評:本題主要考查指數(shù)型函數(shù)的性質(zhì)以及函數(shù)的綜合性質(zhì),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

cos70°•cos20°-sn70°•sin20°的值是( 。
A、0B、1
C、sin50°D、cos50°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3
+4x-4.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)畫出不等式組
x-4y≤-4  
3x+5y≤15  
x≥1  
表示的平面區(qū)域.
(2)A={x|x2-x-6<0},B={x|x2+2x-8>0},求A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x3-3x2在區(qū)間[-1,5]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax2+(2-a)x.
(1)討論f(x)的單調(diào)性;
(2)設[ln(1+ax)]′=
a
1+ax
,[ln(1-ax)]′=
-a
1-ax
,證明:當a>0且0<x<
1
a
時,f(
1
a
+x)>f(
1
a
-x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),它的一個頂點為M(0,1),離心率e=
6
3

(Ⅰ)求橢圓方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=3.求證:直線AB過定點,并求出直線AB的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在研究某種新措施對豬白痢的防治效果問題時,得到以下數(shù)據(jù):
存活數(shù)死亡數(shù)     合計
  未采取新措施     12     25    37
采取新措施     10     24     34
     合計      22     49     71
試問新措施對防治豬白痢是否有效?
附表:
P(K2≥k)0.5000.4000.2500.1500.1000.0500.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)(
x
+
1
3x
)n
的展開式的各項系數(shù)和為32,求這個展開式的常數(shù)項.
(2)若
A
m
n
=272,
C
m
n
=136,問(x-
1
x
)n
的展開式中含xm的項是第幾項.

查看答案和解析>>

同步練習冊答案