17.面對(duì)全球范圍內(nèi)日益嚴(yán)峻的能源形勢(shì)與環(huán)保壓力,環(huán)保與低碳成為今后汽車發(fā)展的一大趨勢(shì),越來(lái)越多的消費(fèi)者對(duì)新能源汽車表示出更多的關(guān)注,某研究機(jī)構(gòu)從汽車市場(chǎng)上隨機(jī)抽取N輛純電動(dòng)汽車調(diào)查其續(xù)航里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)航里程全部介于100公里和450公里之間,根據(jù)調(diào)查數(shù)據(jù)形成了如圖所示頻率分布表及頻率分布直方圖.
頻率分布表
分組  頻數(shù) 頻率
[100,150) 1 0.05
[150,200) 3 0.15
[200,250) x 0.1
[250,300) 6 0.3
[300,350) 40.2 
[350,400) 3 y
[400,450] 1 0.05
 合計(jì) N 1
(1)試確定頻率分布表中x,y,N的值,并補(bǔ)全頻率分布直方圖;
(2)若從續(xù)航里程在[200,250)及[350,400)的車輛中隨機(jī)抽取2輛車,求兩輛車?yán)m(xù)航里程都在[350,400)的概率.

分析 (1)由頻率分布表,列出方程組,能求出N,x,y.由此能補(bǔ)全頻率分布直方圖.
(2)續(xù)航里程在[200,250)的車輛有2輛,續(xù)航里程在[350,400)的車輛有3輛,從續(xù)航里程在[200,250)及[350,400)的車輛中隨機(jī)抽取2輛車,基本事件總數(shù)n=${C}_{5}^{2}$=10,兩輛車?yán)m(xù)航里程都在[350,400)包含的基本事件個(gè)數(shù)m=${C}_{3}^{2}=3$,由此能求出兩輛車?yán)m(xù)航里程都在[350,400)的概率.

解答 解:(1)由頻率分布表,得:
$\left\{\begin{array}{l}{N=\frac{1}{0.05}}\\{\frac{x}{N}=0.1}\\{\frac{3}{N}=y}\end{array}\right.$,解得N=20,x=2,y=0.15.
補(bǔ)全頻率分布直方圖如右圖.
(2)續(xù)航里程在[200,250)的車輛有2輛,續(xù)航里程在[350,400)的車輛有3輛,
∴從續(xù)航里程在[200,250)及[350,400)的車輛中隨機(jī)抽取2輛車,
基本事件總數(shù)n=${C}_{5}^{2}$=10,
兩輛車?yán)m(xù)航里程都在[350,400)包含的基本事件個(gè)數(shù)m=${C}_{3}^{2}=3$,
∴兩輛車?yán)m(xù)航里程都在[350,400)的概率p=$\frac{m}{n}=\frac{3}{10}$.

點(diǎn)評(píng) 本題考查頻率分布表、頻率分布直方圖、概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若半徑為2 的球O中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積為8π時(shí),圓柱的體積為4$\sqrt{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,傾斜角為α的直線l過(guò)點(diǎn)M(-2,-4),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ.
(1)寫出直線l的參數(shù)方程(α為常數(shù))和曲線C的直角坐標(biāo)方程;
(2)若直線l與C交于A、B兩點(diǎn),且|MA|•|MB|=40,求傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)α,β是兩個(gè)不同的平面,m,n,l 是三條不同的直線,下列命題中正確的是( 。
A.若α∩β=l,m?α,n?β,則m,n一定相交B.若α∥β,m?α,n?β,則m,n一定平行
C.若α∥β,m∥α,n∥β,則m,n一定平行D.若α⊥β,m⊥α,n⊥β,則m,n一定垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2$\sqrt{2}+\frac{2π}{3}$B.4$+\frac{2π}{3}$C.2$\sqrt{2}+\frac{π}{3}$D.4$+\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),且橢圓Γ的上頂點(diǎn)到直線$\sqrt{3}$x+y+1=0的距離等于1.
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P(1,2)作兩條傾斜角互補(bǔ)的兩直線l1,l2分別交橢圓Γ于A,B,C,D四點(diǎn),求kAC+kBD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若向量$\overrightarrow{a}$、$\overrightarrow$的夾角為150°,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=4,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.統(tǒng)計(jì)假設(shè)H0:P(AB)=P(A)P(B)成立時(shí),以下判斷:①P($\overline{A}$B)=P($\overline{A}$)•P(B),②P(A$\overline{B}$)=P(A)•P($\overline{B}$),③P($\overline{A}$•$\overline{B}$)=P($\overline{A}$)•P($\overline{B}$),其中正確的命題個(gè)數(shù)有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(λ,-6),$\overrightarrow{a}$∥$\overrightarrow$,則λ=( 。
A.-3B.-2C.2D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案