如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,△AEB是等腰直角三角形,其中∠AEB=90°,則點(diǎn)D到平面ACE的距離為(  )
A、
3
3
B、
2
3
3
C、
3
D、2
3
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間位置關(guān)系與距離
分析:建立如圖所示的空間直角坐標(biāo)系,利用向量法能求出點(diǎn)D到平面ACE的距離.
解答: 解:建立如圖所示的空間直角坐標(biāo)系,
則A(0,-1,0),E(1,0,0),
D(0,-1,2),C(0,1,2).
AD
=(0,0,2),
AE
=(1,1,0),
AC
=(0,2,2),
設(shè)平面ACE的法向量
n
=(x,y,z),
n
AE
=x+y=0
n
AC
=2y+2z=0

令y=1,∴
n
=(-1,1,-1).
故點(diǎn)D到平面ACE的距離
d=
|
AD
n
|
|
n
|
=
2
3
3

故選:B.
點(diǎn)評(píng):本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,E為CC1的中點(diǎn),那么異面直線OE與AD1所成角的余弦值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測(cè):
(Ⅰ)b2014是數(shù)列{an}中的第
 
項(xiàng);
(Ⅱ)若n為正偶數(shù),則b1-b3+b5-b7+…+(-1)n-1b2n-1
 
.(用n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(a,b)是關(guān)于x的一元二次不等式mx2-2x+1<0的解集,則2a+b的最小值為(  )
A、3+2
2
B、
3+2
2
2
C、5+2
2
D、
5+2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2lnx-a(x2-1),a∈R.
(1)當(dāng)a=-1時(shí),求曲線f(x)在(1,f(1))處的切線方程;
(2)當(dāng)x≥1時(shí),f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C的坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),D(sinβ,0),α∈(
π
2
,
2
),β∈(-
π
2
,
π
2
).
(1)若
.
AC
.
BC
,求
2sin2α+sin2α
1+tanα
的值
(2)若|
AC
|=|
BC
|,又
.
AD
.
AB
上投影為
4
2
3
,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩圓x2+y2+4y=0,x2+y2+2(a-1)x+2y+a2=0在交點(diǎn)處的切線方程互相垂直,那么實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用穿根法的圖象做出h(x)=-3+
1
x2
,指出函數(shù)在區(qū)間
 
>0,區(qū)間
 
<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β均為非零的常數(shù),f(1988)=3,則f(2008)的值為( 。
A、1B、3C、5D、不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案