13.已知實數(shù)a,b滿足4a+b=ab,(a≥b>0),則a+b的最小值為9.

分析 4a+b=ab,(a≥b>0),可得b=$\frac{4a}{a-1}$>0,解得a>1.代入變形為a+b=a+$\frac{4a}{a-1}$=a-1+$\frac{4}{a-1}$+5,利用基本不等式的性質(zhì)即可得出.

解答 解:∵4a+b=ab,(a≥b>0),
∴b=$\frac{4a}{a-1}$>0,解得a>1.
則a+b=a+$\frac{4a}{a-1}$=a-1+$\frac{4}{a-1}$+5≥2$\sqrt{(a-1)•\frac{4}{a-1}}$+5=9,當且僅當a=3時取等號.
∴a+b的最小值為9.
故答案為:9.

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知正四棱錐的頂點都在同一球面上,且該棱錐的高為 4,底面邊長為2$\sqrt{2}$,則該球的表面積為25π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=4,an=$\frac{{4{a_{n-1}}-4}}{{{a_{n-1}}}}$,記bn=$\frac{1}{{{a_n}-2}}$.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{bn}前n項和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設f(x)=x2+bx+c(b、c∈R).
(1)設m∈R,函數(shù)g(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+m,x≥0}\\{f(x),x<0}\end{array}\right.$為奇函數(shù),求b+c的值;
(2)若f(x)=x沒有實數(shù)根,問:f(f(x))=x是否有實數(shù)根?并證明你的結(jié)論;
(3)若對一切θ∈R,有f($\frac{2}{sinθ}$)≥0,且f(2+$\frac{1}{1+ta{n}^{2}θ}$的最大值為1,求b、c滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.實數(shù)x,y,z滿足:x+y+z=9,xy+yz+xz=24,則$\frac{{x}^{2}+{y}^{2}}{z}$的取值范圍是$[\frac{8}{5},32]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-(a+1)x-4(a+5),g(x)=x2-ax+5,其中a∈R.
(Ⅰ)若f(x)在區(qū)間[0,1]上不單調(diào),求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)、g(x)存在相同的零點,求實數(shù)a的值;
(Ⅲ)若存在x0∈[1,3],使得不等式|g(x0)|≤2x0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若等比數(shù)列{an}的前n項和Sn=2016n+t(t為常數(shù)),則a1的值為( 。
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若函數(shù)f(x)=2aex-x2+3(a為常數(shù),e是自然對數(shù)的底)恰有兩個極值點,則實數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y-4≤0}\\{x-3y≥0}\\{y≥0}\end{array}\right.$,則z=x-2y的最大值為4.

查看答案和解析>>

同步練習冊答案