A. | 2013 | B. | 2014 | C. | 2015 | D. | 2016 |
分析 先求出a1,a2,a3,能等比數(shù)列的性質(zhì)求出t=-1,由此能求出a1的值.
解答 解:∵等比數(shù)列{an}的前n項和Sn=2016n+t(t為常數(shù)),
∴${a}_{1}={S}_{1}{{=2016}_{\;}}^{1}$+t=2016+t,
a2=S2-S1=20162+t-(2016+t)=4062240,
a3=S3-S2=20163+t-(20162+t)=8189475840,
∵${{a}_{2}}^{2}={a}_{1}{a}_{3}$,
∴40622402=(2016+t)×8189475840,
解得t=-1,
∴a1=2016+(-1)=2015.
故選:C.
點評 本題考查等比數(shù)列中首項的求法,是基礎(chǔ)題,解題時要認真審題,注意a1的值的求法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100 | B. | 92 | C. | 84 | D. | 76 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{(5π-6\sqrt{3})^{2}}{18}$ | B. | $\frac{(5π+6\sqrt{3})^{2}}{18}$ | C. | $\frac{{π}^{2}}{18}$ | D. | $\frac{{π}^{2}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當x>0且x≠1時,lgx+$\frac{1}{lgx}$≥2 | |
B. | 當x>0時,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2 | |
C. | 當0<θ≤$\frac{π}{2}$時,sinθ+$\frac{2}{sinθ}$的最小值為2$\sqrt{2}$ | |
D. | 當-$\frac{1}{2}$≤x<0時,x+$\frac{1}{x}$有最大值-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 2$\sqrt{6}$π | C. | 6π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com