【題目】如圖是以為直徑的圓上一段圓弧,是以為直徑的圓上一段圓弧,是以為直徑的圓上一段圓弧,三段弧構(gòu)成曲線.則下面說法正確的是( )

A.曲線軸圍成的面積等于

B.的公切線方程為:

C.所在圓與所在圓的交點(diǎn)弦方程為:

D.用直線所在的圓,所得的弦長為

【答案】BC

【解析】

由題知曲線x軸圍成的圖形為一個(gè)半圓、一個(gè)矩形和兩個(gè)四分之一圓,求面積和,可判斷A;設(shè)的公切線方程,由直線與圓相切的條件,列方程組,可求得直線方程,即可判斷B;由兩圓方程聯(lián)立相減,則可求出所在圓與所在圓的交點(diǎn)弦方程,可判斷C;由弦長公式求出弦長,可判斷D.

各段圓弧所在圓方程分別為:

,

曲線x軸圍成的圖形為一個(gè)半圓、一個(gè)矩形和兩個(gè)圓,

面積為,故選項(xiàng)A錯(cuò)誤;

設(shè)的公切線方程為:,

,解得,

所以的公切線方程為:

,故選項(xiàng)B正確;

兩式相減得:

即為交點(diǎn)弦所在直線方程,故選項(xiàng)C正確;

所在圓的方程為,圓心為

圓心到直線的距離為,

則弦長為,故選項(xiàng)D錯(cuò)誤.

故選:BC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮 讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程

(2)預(yù)測該路口 9月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)若從表中3、4月份分別抽取4人和2人,然后再從中任選2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)點(diǎn)到定點(diǎn)的距離比它到直線的距離小1,設(shè)動(dòng)點(diǎn)的軌跡為曲線,過點(diǎn)的直線交曲線、兩個(gè)不同的點(diǎn),過點(diǎn)、分別作曲線的切線,且二者相交于點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增數(shù)列的前項(xiàng)和為,且滿足.

1)求證:數(shù)列為等差數(shù)列;

2)試求所有的正整數(shù),使得為整數(shù);

3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2,平面ABC,D,E分別是AC,的中點(diǎn).

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定一個(gè)項(xiàng)的實(shí)數(shù)列 , ,任意選取一個(gè)實(shí)數(shù),變換將數(shù)列, , 變換為數(shù)列 , ,再將得到的數(shù)列繼續(xù)實(shí)施這樣的變換,這樣的變換可以連續(xù)進(jìn)行多次,并且每次所選擇的實(shí)數(shù)可以不相同,第次變換記為,其中為第次變換時(shí)所選擇的實(shí)數(shù).如果通過次變換后,數(shù)列中的各項(xiàng)均為,則稱, , 為“次歸零變換”.

)對數(shù)列 , ,給出一個(gè)“次歸零變換”,其中

)對數(shù)列, , ,給出一個(gè)“次歸零變換”,其中

)證明:對任意項(xiàng)的實(shí)數(shù)列,都存在“次歸零變換”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,其前項(xiàng)和滿足:.

1)求數(shù)列的通項(xiàng)公式

2)設(shè),求證:

3)設(shè)(為非零整數(shù),),是否存在確定的值,使得對任意,有恒成立.若存在求出的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),,,.

求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓B為橢圓上任一點(diǎn),F為橢圓左焦點(diǎn),已知的最小值與最大值之和為4,且離心率,拋物線的通徑為4

求橢圓和拋物線的方程;

設(shè)坐標(biāo)原點(diǎn)為OA為直線與已知拋物線在第一象限內(nèi)的交點(diǎn),且有

試用k表示AB兩點(diǎn)坐標(biāo);

是否存在過AB兩點(diǎn)的直線l,使得線段AB的中點(diǎn)在y軸上?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案