【題目】已知圓的方程為: 。
(1)求圓的圓心所在直線方程一般式;
(2)若直線被圓截得弦長為,試求實(shí)數(shù)的值;
(3)已知定點(diǎn),且點(diǎn)是圓上兩動(dòng)點(diǎn),當(dāng)可取得最大值為時(shí),求滿足條件的實(shí)數(shù)的值。
【答案】(1);(2)或;(3).
【解析】試題分析:
(1)配方得圓的標(biāo)準(zhǔn)方程,可得圓心坐標(biāo)滿足,消去可得圓心所在直線方程;
(2)由弦長、半徑結(jié)合勾股定理求出圓心到直線的距離,再由點(diǎn)到直線距離公式求得圓心到直線的距離,兩者相等可解得m;
(3)本題關(guān)鍵是∠APB何時(shí)最大?由于P點(diǎn)固定,因此當(dāng)PA,PB是圓的兩切線時(shí)∠APB最大,由此角是90°,這樣PACB是正方形,可得CP=,由兩點(diǎn)間距離公式可求得m.
試題解析:
(1)由已知圓C的方程為:
所以圓心為
所以圓心在直線方程為
(2)由已知r=2,又弦長為,
所以圓心到直線距離為
所以
解得m=-1或m=3
(3)當(dāng)PA、PB為圓的兩條切線時(shí),∠APB取最大值.
此時(shí)∠APB=90°,又CA⊥PA,CB⊥PB,CA=CB
所以四邊形PACB為正方形,則∣CP∣=
即P到圓心C的距離=
解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)用“五點(diǎn)法”在如圖所示的虛線方框內(nèi)作出函數(shù)在一個(gè)周期內(nèi)的簡圖(要求:列表與描點(diǎn),建立直角坐標(biāo)系);
(2)函數(shù)的圖像可以通過函數(shù)的圖像經(jīng)過“先伸縮后平移”的規(guī)則變換而得到,請(qǐng)寫出一個(gè)這樣的變換!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(+x)cos(-x),g(x)=sin 2x-.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是線段AE上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面MDF將幾何體ADE﹣BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段的端點(diǎn),端點(diǎn)在圓上運(yùn)動(dòng)
(Ⅰ)求線段的中點(diǎn)的軌跡方程.
(Ⅱ) 設(shè)動(dòng)直線與圓交于兩點(diǎn),問在軸正半軸上是否存在定點(diǎn),使得直線與直線關(guān)于軸對(duì)稱?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了50名女性和50名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖
(1)完成下列2×2列聯(lián)表:
喜歡旅游 | 不喜歡旅游 | 合計(jì) | |
女性 | |||
男性 | |||
合計(jì) |
(2)能否在犯錯(cuò)率不超過0.025的前提下認(rèn)為“喜歡旅游與性別有關(guān)” 附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對(duì)于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)當(dāng)時(shí),解不等式;
(Ⅱ)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;
(Ⅲ)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com