2.若數(shù)列{an}的通項公式是an=(-1)n•(3n-2),求數(shù)列{an}的前n項和.

分析 對n分類討論,分組求和即可得出.

解答 解:∵an=(-1)n•(3n-2),
∴n=2k(k∈N*)時,T2k=(-1+4)+(-7+10)+…+[-3(2k-1)+2+3×2k-2]
=3k=$\frac{3n}{2}$.
n=2k-1(k∈N*)時,T2k-1=-1+(4-7)+(10-13)+…+[3(2k-3)-2-3×(2k-1)+2]
=-1-3×(k-1)=-3k+2=$\frac{1-3n}{2}$.
∴數(shù)列{an}的前n項和Tn=$\left\{\begin{array}{l}{\frac{3n}{2},n=2k}\\{\frac{1-3n}{2},n=2k-1}\end{array}\right.$,k∈N*

點評 本題考查了遞推關(guān)系、等差數(shù)列的通項公式及其前n項和公式、分組求和方法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若復(fù)數(shù)z滿足|z+3|=|z-4i|(i為虛數(shù)單位),則|z|的最小值為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.過△ABC的重心G任作一條直線分別交AB,AC于點D、E,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{AG}$;
(2)若$\overrightarrow{AD}$=x$\overrightarrow{AB}$,$\overrightarrow{AE}$=y$\overrightarrow{AC}$,且xy≠0,求$\frac{1}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=2cos2(x+$\frac{π}{4}$)-1的一個單調(diào)遞減區(qū)間是(  )
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(-$\frac{π}{2}$,$\frac{π}{2}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸出的值為-5,則判斷框中可以填入的條件為( 。
A.z>10?B.z≤10?C.z>20?D.z≤20?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{6}$),x∈[-$\frac{π}{6}$,α]的值域是[-$\frac{1}{2}$,1],則實數(shù)α的取值范圍為[$\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.非空集合A={(x,y)$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y-1≤0}\\{2x+ay-2≤0}\end{array}\right.$},當(dāng)(x,y)∈A時,對任意實數(shù)m,目標(biāo)函數(shù)z=x+my的最大值和最小值至少有一個不存在,則實數(shù)a的取值范圍是( 。
A.(-∞,2)B.[0,2)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=sin(x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位后的圖象關(guān)于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖程序運行后,得到的a,b,c分別為( 。
A.2,3,2B.2,3,1C.3,2,1D.3,2,3

查看答案和解析>>

同步練習(xí)冊答案