【題目】函數(shù)的圖象為C,如下結(jié)論中正確的是( )
①圖象C關(guān)于直線對(duì)稱(chēng);②函數(shù)在區(qū)間內(nèi)是增函數(shù);
③圖象C關(guān)于點(diǎn)對(duì)稱(chēng);④由的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C
A.①③B.②③C.①②③D.①②
【答案】C
【解析】
先通過(guò)三角公式將函數(shù)變形為的形式,
①直接利用整體思想求出函數(shù)的對(duì)稱(chēng)軸方程,根據(jù)的取值求得結(jié)果.
②直接利用整體思想求出函數(shù)的單調(diào)區(qū)間,根據(jù)的取值求得結(jié)果.
③直接利用整體思想求出函數(shù)的對(duì)稱(chēng)中心,根據(jù)的取值求得結(jié)果.
④直接利用函數(shù)的平移變換求得結(jié)果.
解:
①令:,解得:,
當(dāng)時(shí),圖象關(guān)于直線對(duì)稱(chēng),所以①正確.
②令:,
解得:,
當(dāng)時(shí),函數(shù)在區(qū)間內(nèi)是增函數(shù);所以②正確.
③令:,解得:,
當(dāng)時(shí),圖象關(guān)于點(diǎn)對(duì)稱(chēng).所以③正確.
④將的圖象向右平移個(gè)單位,得到的函數(shù)解析式為,所以④錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于兩點(diǎn)且.求證: 的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)問(wèn)政直播節(jié)目首場(chǎng)內(nèi)容是“讓交通更順暢”.A、B、C、D四個(gè)管理部門(mén)的負(fù)責(zé)人接受問(wèn)政,分別負(fù)責(zé)問(wèn)政A、B、C、D四個(gè)管理部門(mén)的現(xiàn)場(chǎng)市民代表(每一名代表只參加一個(gè)部門(mén)的問(wèn)政)人數(shù)的條形圖如下.為了了解市民對(duì)武漢市實(shí)施“讓交通更順暢”幾個(gè)月來(lái)的評(píng)價(jià),對(duì)每位現(xiàn)場(chǎng)市民都進(jìn)行了問(wèn)卷調(diào)查,然后用分層抽樣的方法從調(diào)查問(wèn)卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
滿(mǎn)意 | 一般 | 不滿(mǎn)意 | |
A部門(mén) | 50% | 25% | 25% |
B部門(mén) | 80% | 0 | 20% |
C部門(mén) | 50% | 50% | 0 |
D部門(mén) | 40% | 20% | 40% |
(1)若市民甲選擇的是A部門(mén),求甲的調(diào)查問(wèn)卷被選中的概率;
(2)若想從調(diào)查問(wèn)卷被選中且填寫(xiě)不滿(mǎn)意的市民中再選出2人進(jìn)行電視訪談,求這兩人中至少有一人選擇的是D部門(mén)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M在橢圓上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F.
(Ⅰ)若圓M與y軸相切,求橢圓的離心率;
(Ⅱ)若圓M與y軸相交于A,B兩點(diǎn),且是邊長(zhǎng)為2的正三角形,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿(mǎn)足:,.的前n項(xiàng)和為.
(Ⅰ)求 及;
(Ⅱ)若 ,(),求數(shù)列的前項(xiàng)和.
【答案】(Ⅰ), (Ⅱ)=
【解析】
試題分析:(Ⅰ)設(shè)出首項(xiàng)a1和公差d ,利用等差數(shù)列通項(xiàng)公式,就可求出,再利用等差數(shù)列前項(xiàng)求和公式就可求出;(Ⅱ)由(Ⅰ)知,再利用 ,(),就可求出,再利用錯(cuò)位相減法就可求出.
試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d
∵ , ∴ 解得
∴ ,
(Ⅱ)∵ , ∴
∵ ∴
∴
= (1- + - +…+-)
=(1-) =
所以數(shù)列的前項(xiàng)和= .
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式; 2. 等差數(shù)列的前n項(xiàng)和公式; 3.裂項(xiàng)法求數(shù)列的前n項(xiàng)和公式
【題型】解答題
【結(jié)束】
18
【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
()求證: 平面.
()求二面角的余弦值.
()在線段(含端點(diǎn))上,是否存在一點(diǎn),使得平面,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法中:
①有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱
②相等的線段在直觀圖中仍然相等
③一個(gè)直角三角形繞其一邊旋轉(zhuǎn)一周所形成的封閉圖形叫圓錐
④用一個(gè)平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺(tái)正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,是中點(diǎn),則下列敘述正確的是( )
A. 平面
B. 與是異面直線
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 經(jīng)過(guò)點(diǎn),焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于不同的兩點(diǎn)、,線段的垂直平分線交軸交于點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈三中群力校區(qū)高二、六班同學(xué)用隨機(jī)抽樣的辦法對(duì)所在校區(qū)老師的飲食習(xí)慣進(jìn)行了一次調(diào)查, 飲食指數(shù)結(jié)果用莖葉圖表示如圖, 圖中飲食指數(shù)低于70的人是飲食以蔬菜為主;飲食指數(shù)高于70的人是飲食以肉類(lèi)為主.
(1)完成下列2×2列聯(lián)表:
能否有99%的把握認(rèn)為老師的飲食習(xí)慣與年齡有關(guān)?
(2)從群力校區(qū)任選一名老師, 設(shè)“選到45歲以上老師”為事件, “飲食指數(shù)高于70的老師”為事件, 用調(diào)查的結(jié)果估計(jì)及(用最簡(jiǎn)分?jǐn)?shù)作答);
(3)為了給食堂提供老師的飲食信息, 根據(jù)(1)(2)的結(jié)論,能否有更好的抽樣方法來(lái)估計(jì)老師的飲食習(xí)慣, 并說(shuō)明理由.附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com