11.在△ABC中,a=x,b=2,B=30°,若這個三角形有兩解,則x的取值范圍是(2,4 ).

分析 由題意判斷出三角形有兩解時,A的范圍,通過正弦定理及正弦函數(shù)的性質(zhì)推出x的范圍即可.

解答 解:由AC=b=2,要使三角形有兩解,就是要使以C為圓心,半徑為2的圓與BA有兩個交點(diǎn),
當(dāng)A=90°時,圓與AB相切;
當(dāng)A=30°時交于B點(diǎn),也就是只有一解,
∴30°<A<150°,且A≠90°,即 $\frac{1}{2}$<sinA<1,
由正弦定理以及asinB=bsinA.可得:a=x=$\frac{bsinA}{sinB}$=4sinA,
∵4sinA∈(2,4 ).
∴x的取值范圍是(2,4 ).
故答案為:(2,4 ).

點(diǎn)評 此題考查了正弦定理,正弦函數(shù)的圖象與性質(zhì),以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是某幾何體的三視圖,其中正視圖為正方形,俯視圖是腰長為2的等腰直角三角形,則該幾何體的體積為$\underline{\frac{8}{3}}$;表面積為6+4$\sqrt{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{4}{5}$-f(1-x),則函數(shù)y=f(x)-g(x)的零點(diǎn)的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,復(fù)數(shù)z=(m-1)(m-2)+(m-2)i,m∈R,若z是純虛數(shù),則m=( 。
A.1B.2C.1或2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow$=(cosωx-sinωx,2sinωx)(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,若f(x)的最小正周期為π.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=1,a=$\sqrt{21}$,b+c=9,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)A={1,2,3,4,5,6},B={4,5,6,7},則滿足S⊆A且S∩B=∅的集合S的個數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)是偶函數(shù),當(dāng)x>0時,f(x)=4m-x,且f(-2)=$\frac{1}{8}$,則m的值為( 。
A.-lB.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)y=f(x)的定義域是[-2,3],則函數(shù)y=f(x+1)+f(x-1)的定義域?yàn)閇-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題說法正確的是( 。
A.若α>β,則sinα>sinβ
B.數(shù)列{an},{bn}為等比數(shù)列,則數(shù)列{an+bn}為等比數(shù)列
C.函數(shù)f(x),g(x)均為增函數(shù),則函數(shù)f(x)•g(x)為增函數(shù)
D.在△ABC中,若a>b,則sinA>sinB

查看答案和解析>>

同步練習(xí)冊答案