19.已知如圖,四邊形ABCD是圓O的內接四邊形,對角線AC,BD交于點E,直線AP是圓O的切線,切點為A,∠PAB=∠BAC.
(1)若BD=5,BE=2,求AB的長;
(2)在AD上取一點F,若∠FED=∠CED,求∠BAF+∠BEF的大。

分析 (1)證明△ABD∽△EBA,可得證明AB2=BD•BE,即可求AB的長;
(2)證明∠BAF+∠BEF=∠BAD+∠BEF=∠FED+∠BEF=180°,即可得出結論.

解答 解:(1)∵AP是圓O的切線,
∴∠PAB=∠ADB,
由∠PAB=∠BAC,
∴∠ADB=∠BAC.
又∠ABD=∠EBA,
∴△ABD∽△EBA,
∴$\frac{AB}{EB}=\frac{BD}{AB}$.
又BD=5,BE=2,
∴AB2=BD•BE=10,∴$AB=\sqrt{10}$.
(2)由(1)知,∠BAD=∠BEA,
∵∠BEA=∠CED=∠FED,
∴∠BAD=∠FED,
∴∠BAF+∠BEF=∠BAD+∠BEF=∠FED+∠BEF=180°.

點評 本題考查三角形相似的證明,考查角的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知動圓過定點(0,1),且直線y=-1相切.
(1)求動圓圓心的軌跡C的方程;
(2)過軌跡C上一點M(2,n)作傾斜角互補的兩條M線,分別與C交于異于M的A,B兩點,求證:直線AB的斜率為定值:
(3)如果A,B兩點的橫坐標均不大于0,求△MAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若函數(shù)f(x)是定義在R上的以5為周期的奇函數(shù),若f(3)=0,則在(0,10)上,y=f(x)的零點的個數(shù)是( 。
A.3個B.4個C.5個D.7個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.證明:設f(x),g(x)都是[-a,a]上的偶函數(shù),則f(x)+g(x),f(x)•g(x)也是[-a,a]上的偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于函數(shù)f(x)=2sinxcosx+2,下列選項中正確的個數(shù)是(  )
①f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是遞增的  
②f(x)的圖象關于原點對稱
③f(x)的最小正周期為2π
④f(x)的最大值為3.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.“a=-1”是“直線ax-y+5=0與直線(a-1)x+(a+3)y-2=0垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.復數(shù)$\frac{(2+i)(1-i)^{2}}{1-2i}$等于( 。
A.-1B.-2iC.iD.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,它的一個焦點恰好是拋物線y2=4x的焦點.
(1)求橢圓的方程;
(2)若上述橢圓的左焦點到直線y=x+m的距離等于$\sqrt{2}$,求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知矩形ABCD的頂點都在半徑為5的球O的表面上,且AB=6,BC=2$\sqrt{5}$,則棱錐O-ABCD的側面積為44.

查看答案和解析>>

同步練習冊答案