【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于甲地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度與時(shí)間的函數(shù)圖象圖所示,過(guò)線段上一點(diǎn)作橫軸的垂線,梯形在直線左側(cè)部分的面積即為內(nèi)沙塵暴所經(jīng)過(guò)的路程.
(1) 當(dāng)時(shí),求的值;
(2)將隨變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若乙城位于甲地正南方向,且距甲地,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到乙城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到乙城?如果不會(huì),請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3)會(huì),.
【解析】
(1)作出圖形,設(shè)直線分別交直線、于點(diǎn)、,可知的值為直角梯形的面積,進(jìn)而得解;
(2)分、、三種情況討論,分析直線左側(cè)圖形的形狀,計(jì)算出其面積,即為關(guān)于的函數(shù)表達(dá)式;
(3)分、、三種情況解方程,求出值,即為所求時(shí)間.
(1)設(shè)直線分別交直線、于點(diǎn)、,則,,,
則的值為直角梯形的面積,所以,;
(2)當(dāng)時(shí),此時(shí),,(如圖);
當(dāng)時(shí),此時(shí),,(如圖),
;
當(dāng)時(shí),、的坐標(biāo)分別為、,
直線的解析式為,點(diǎn)坐標(biāo)為
綜上,;
(3)沙塵暴會(huì)侵襲到乙城.
當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),令,解得,,
,.
所以沙塵暴發(fā)生后侵襲到乙城.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下關(guān)于線性方程組解的個(gè)數(shù)的命題.
①,②,③,④,
(1)方程組①可能有無(wú)窮多組解;
(2)方程組②可能有且只有兩組不同的解;
(3)方程組③可能有且只有唯一一組解;
(4)方程組④可能有且只有唯一一組解.
其中真命題的序號(hào)為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列同時(shí)滿足:①對(duì)于任意的正整數(shù), 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.
(1)已知判斷數(shù)列是否為“數(shù)列”,并說(shuō)明理由;
(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心C在直線上的圓過(guò)兩點(diǎn),.
(1)求圓C的方程;
(2)若直線與圓C相交于A,B兩點(diǎn),①當(dāng)時(shí),求AB的方程;②在y軸上是否存在定點(diǎn)M,使,若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列,滿足:對(duì)任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項(xiàng)公式;
(Ⅲ)設(shè)=++…+,如果對(duì)任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫出與橢圓相似且焦點(diǎn)在軸上、短半軸長(zhǎng)為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍;
(3)如圖:直線與兩個(gè)“相似橢圓”和分別交于點(diǎn)和點(diǎn),試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使和組成以為相似比的兩個(gè)相似三角形,寫出具體作法.(不必證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在高二下學(xué)期開設(shè)四門數(shù)學(xué)選修課,分別為《數(shù)學(xué)史選講》.《球面上的幾何》.《對(duì)稱與群》.《矩陣與變換》.現(xiàn)有甲.乙.丙.丁四位同學(xué)從這四門選修課程中選修一門,且這四位同學(xué)選修的課程互不相同,下面關(guān)于他們選課的一些信息:①甲同學(xué)和丙同學(xué)均不選《球面上的幾何》,也不選《對(duì)稱與群》:②乙同學(xué)不選《對(duì)稱與群》,也不選《數(shù)學(xué)史選講》:③如果甲同學(xué)不選《數(shù)學(xué)史選講》,那么丁同學(xué)就不選《對(duì)稱與群》.若這些信息都是正確的,則丙同學(xué)選修的課程是( 。
A. 《數(shù)學(xué)史選講》B. 《球面上的幾何》C. 《對(duì)稱與群》D. 《矩陣與變換》
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)整數(shù)是區(qū)間中的不同整數(shù).證明:集合有這樣的子集存在,它的所有元素之和能被整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
若是函數(shù)的極值點(diǎn),1是函數(shù)的一個(gè)零點(diǎn),求的值;
當(dāng)時(shí),討論函數(shù)的單調(diào)性;
若對(duì)任意,都存在,使得成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com