【題目】已知函數(shù)

是函數(shù)的極值點(diǎn),1是函數(shù)的一個(gè)零點(diǎn),求的值;

當(dāng)時(shí),討論函數(shù)的單調(diào)性;

若對(duì)任意,都存在,使得成立,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2)詳見解析;(3).

【解析】

(1)先求導(dǎo)得到,,得到的值,繼而求出的值;

(2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間即可;

(3)問題轉(zhuǎn)化為有解即可,亦即只需存在使得即可,連續(xù)利用導(dǎo)函數(shù),然后分別對(duì)看是否存在使得,進(jìn)而得到結(jié)論.

(1)

是函數(shù)的極值點(diǎn),

∵1是函數(shù)的零點(diǎn),得

,

解得,

;

(2)時(shí),,

時(shí),遞增,

時(shí),令,解得:

,解得:,

遞減,在遞增;

(3)令,則為關(guān)于的一次函數(shù)且為增函數(shù),

根據(jù)題意,對(duì)任意,都存在 為自然對(duì)數(shù)的底數(shù)),使得成立,

則在,有解,

,只需存在使得即可,

由于

,,

上單調(diào)遞增,,

①當(dāng),即時(shí),,即,上單調(diào)遞增,∴,不符合題意.

②當(dāng),即時(shí),

,則,所以在恒成立,即恒成立,∴上單調(diào)遞減,

∴存在使得,符合題意.

,則,∴在上一定存在實(shí)數(shù),使得,

∴在恒成立,即恒成立,∴上單調(diào)遞減,

∴存在使得,符合題意.綜上所述,當(dāng)時(shí),對(duì)任意,都存在為自然對(duì)數(shù)的底數(shù)),使得成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于甲地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度與時(shí)間的函數(shù)圖象圖所示,過線段上一點(diǎn)作橫軸的垂線,梯形在直線左側(cè)部分的面積即為內(nèi)沙塵暴所經(jīng)過的路程.

1 當(dāng)時(shí),求的值;

2)將變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);

3)若乙城位于甲地正南方向,且距甲地,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到乙城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到乙城?如果不會(huì),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為矩形, 平面 .

(1)求證: ;

(2)若直線平面,試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;

(3)若, ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法錯(cuò)誤的是( )

A. 若“”為假命題,則p,q均為假命題

B. ”是“”的充分不必要條件

C. ”的必要不充分條件是“

D. 若命題p,,則命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中“sinA>sinB”是“cosA<cosB”的( )

A充分不必要條件 B必要不充分條件

C充要條件 D既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,是正三角形,,點(diǎn)在底面上的射影恰好是中點(diǎn),側(cè)棱和底面成角.

1)求證:;

2)求二面角的大小;

3)求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知傾斜角為的直線過點(diǎn)和點(diǎn),點(diǎn)在第一象限,.

1)求的坐標(biāo);

2)若直線與兩平行直線,相交于兩點(diǎn),且,求實(shí)數(shù)的值;

3)記集合直線經(jīng)過點(diǎn)且與坐標(biāo)軸圍成的面積為,針對(duì)的不同取值,討論集合中的元素個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)M(0,2),N(2,0),直線lkxy2k20(k為常數(shù))

(1)若點(diǎn)M,N到直線l的距離相等,求實(shí)數(shù)k的值;

(2)對(duì)于l上任意一點(diǎn)P,∠MPN恒為銳角,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案